
Architectural	Support	for	
Opera1ng	Systems
CS	4410,	Opera1ng	Systems	

Fall	2016	
Cornell	University

Rachit	Agarwal	
Anne	Bracy	

See:	Chapter	2	in	OSPP	textbook

Software	to	manage	hardware	resources

What	is	an	operating	system?

Hardware	(CPU,	RAM,	Modem,	…)

Applica1ons	(Maps,	Siri,	Safari,	…)

Opera1ng	System

Virtual	
Machine	
Interface

Physical	
Machine	
Interface

What	hw	is	needed	to	help	the	OS	do	its	job?

What	is	a	Process?

3

code

int x;

executable

10101010

instructions,
static data,
initial values

compile run

Stack

Heap
Data

Instructions

[Disk]

[Physical Memory]

Final Run Step: OS sets PC
to program’s first insn

PC

Stack

Heap
Data

Instructions

OS

Kernel[Disk]

…an instance of a program

SP

Protect	who	from	what?

4

What	could	possibly	go	wrong?	

Stack
Heap
Data
Insns

Stack
Heap
Data
Insns

Stack
Heap
Data
Insns

OS

Kernel

someone’s

first C

program

in 3410

US

military

defense

software

Privilege	Levels

5

Some	processor	func1onality	cannot	be	made	
accessible	to	untrusted	user	applica1ons	

Opera1ng	System	=		the	mediator	between				
																																		untrusted/untrus1ng	apps	

Need	to	differen1ate	untrusted	apps	and	OS	code	

Solu1on:	“privilege	mode”	bit	in	the	processor	
									0	=	Untrusted	=	user					1	=	Trusted	=	OS

Privileged	InstrucBons

6

• 		changing	the	privilege	mode	
• 		wri1ng	to	certain	registers	(page	table	base	register)	
• 		enabling	a	co-processor	
• 		changing	memory	access	permissions	
• 		manipulate	device	seYngs	
• 		signal	other	users’	processes	
• 		print	character	to	screen	
• 		send	a	packet	on	the	network	
• 		allocate	a	new	page	in	memory	

CPU	knows	which	instruc1ons	are	privileged.		
opcode	==	privileged	&&	mode	==	0	➜		Excep&on!

Context	Switch/Mode	Transfer

7

Interrupt	handler		
1. saves	all	registers	
2. examines	the	cause	
3. performs	opera1on	required	
4. restores	all	registers

why hardware

support?

why save the

privilege mode?

where is this

address stored?

Hardware	transfer	to	kernel:	
1.	save	privilege	mode,	set	mode	to	1			
2.	mask	interrupts				(see	slide	14)		
3.	save:	SP,	PC,	eflags	register	(x86)	
4.	switches	SP	to	the	kernel	stack	
5.	save	values	from	#2	onto	kernel	stack	
6.	save	error	code	
7.	set	PC	to	the	interrupt	vector	table

Performs	“Return	from	Interrupt”	insn	(maybe)	
•	restores	the	privilege	mode,	SP	and	PC

Process	Control	Block	(PCB)

8

For	each	process,	the	OS	has	a	PCB	containing:	
•		loca1on	in	memory	
•		loca1on	of	executable	on	disk	
•		which	user	is	execu1ng	this	process	
•		process	privilege	level	
•		process	arguments	
•		register	values	
•		PC,	SP,	eflags	
		…	and	more!	

Usually	lives	on	the	kernel	stack

Privileged	InstrucBons

9

• 	changing	the	privilege	mode	
• 		wri1ng	to	certain	registers	(page	table	base	register)	
• 		enabling	a	co-processor	
• 		changing	memory	access	permissions	
• 		manipulate	device	seYngs	
• 		signal	other	users’	processes	
• 		print	character	to	screen	
• 		send	a	packet	on	the	network	
• 		allocate	a	new	page	in	memory	

CPU	knows	which	instruc1ons	are	privileged.		
opcode	==	privileged	&&	mode	==	0	➜		Excep&on!

is this really so bad?

Hardware	transfer	to	kernel:	
1.	save	privilege	mode,	set	mode	to	1			
2.	mask	interrupts				(see	slide	14)		
3.	save:	SP,	PC,	eflags	register	(x86)	
4.	switches	SP	to	the	kernel	stack	
5.	save	values	from	#2	onto	kernel	stack	
6.	save	error	code	
7.	set	PC	to	the	interrupt	vector	table

System	Call	(slight	variaBon	on	standard	context	switch)

10

	←	which	syscall	was	called,		
																																	might	have	arguments

	←	sys	call	not	an	error

return to

which insn?
Performs	“Return	from	Interrupt”	insn	(maybe)	
•	restores	the	privilege	mode,	SP	and	PC

Interrupt	handler		
1. saves	all	registers			←	callee	only	
2. examines	the	cause	
3. performs	opera1on	required	
4. restores	all	registers		←	callee	only

Let’s	Start	at	the	Very	Beginning…

11

In	the	beginning…	(when	the	system	starts	up)	
•		privilege	mode	set	to	1	
•		PC	contains	address	of	boot	code	
•		boot	code	loads	kernel	into	memory	
•		kernel	does	some	setup	(devices,	ini1alizes						
						MMU,	creates	interrupt	vector	table,	etc.)		
•		picks	an	applica1on,	loads	it	
•		resets	privilege	bit	
•		changes	PC	to	star1ng	instruc1on	of	the	chosen		
						applica1on Now what?

How does the OS re-take control?

Interrupts

12

Timer	Interrupts:	
Process	interrupted	aier	certain	period		
		(number	of	instruc1ons	executed	or	1me	passed)		

Bme	→	

More	Generally:	Hardware	Interrupts	
External	Event	has	happened.		
OS	needs	to	check	it	out.	
Process	stops	what	it’s	doing,	invokes	OS,	
which	handles	the	interrupt.

OS P1 OS P2OSP1 OS P2OSP3

Interrupt	Management

13

Interrupt	controllers	manage	interrupts	

Interrupts	have	descriptor	of	the	interrup1ng	device	
Priority	selector	circuit	examines	all	interrup1ng	
devices,	reports	highest	level	to	the	CPU	

Interrupt	controller	implements	interrupt	priori1es	
Can	op1onally	remap	priority	levels

CPU interrupt
controller

Masking	Interrupts

14

Maskable	interrupts:	can	be	turned	off	by	the	CPU	for	
cri1cal	processing	(misnomer:	delayed)	

Nonmaskable	interrupts:	signifies	serious	errors	(e.g.,	
unrecoverable	memory	error,	power	out	warning,	etc)	

Why	would	we	want	to	mask	interrupts?	
						(“discuss	later”	on	slide	7)

Three	ways	for	the	OS	to	be	invoked

15

1.	Hardware	interrupt	
• 	some	other	enBty	trying	to	get	CPU’s	aVenBon	
• 	Asynchronous	=	caused	by	an	external	event	
• 	Examples:	keystroke,	arrival	of	a	packet	from	network	

2.	System	Call	
• 	process	needs	help	from	the	OS	
• 	Inten1onal,	Synchronous	=	caused	by	the	syscall	insn	
• 	Examples:	open,	write,	fork,	exit	

3.	Excep1on	
• 	something	went	wrong		
• 	Uninten1onal,	Synchronous	=	caused	by	execu1ng	insn	
• 	Examples:	privileged	insn	in	user	mode,	page	fault	

are we done yet?Terminology Chaos.

Uniprogramming

16

No	TranslaBon	or	ProtecBon	
Applica1on:	
•		Only	one	applica1on	at	a	1me			
•		Always	runs	at	same	place	in	
physical	memory		
•		Can	access	any	physical	address	
•		Illusion	of	dedicated	machine	
achieved	by	reality	of	a	
dedicated	machine	

Stack
Heap
Data
Insns

Stack
Heap
Data
Insns

OS

application

0x00000000

0xFFFFFFFF

MulBprogramming,	V1

17

No	TranslaBon	
Adjust	addresses	(ld,	st,	jmps)	
when	program	loaded	into	memory	
•		Everything	adjusted	to	memory	
loca1on	of	program	
•		“Transla1on”	by	Linker/Loader	
•		Common	in	early	days	

No	protecBon	
Any	process	can	crash	another		
	(or	the	OS!)	

Stack
Heap
Data
Insns

Stack
Heap
Data
Insns

OS

app
#2

0x00000000

0xFFFFFFFF

Stack
Heap
Data
Insns

app
#1

0x00200000

18

Code	example

19

/*
 * Corresponds to Figure 2.7 in the textbook
 */

#include <stdio.h>
#include <unistd.h>

int globalVar = 0; // a static variable

int main() {

 int localVar = 7;

 globalVar += 1;

 // sleep causes the program to wait for x seconds
 sleep(5);
 printf (“Loc Var: Addr: %p; Val: %d\n", &localVar, localVar);
 printf (“Gl Var: Addr: %p; Val: %d\n", &globalVar, globalVar);
 printf ("Location of Main: Address: \t%p\n", &main);
}

Stack
Heap
Data
Insns

Stack
Heap
Data
Insns

OS

0x00000000

0xFFFFFFFF

Stack
Heap
Data
Insns

“When	mul1ple	copies	of	this	program	
simultaneously,	the	output	does	not	change.”

MulBprogramming,	V1++

20

Add	ProtecBon	
•		Two	registers	(base	and	limit)			
	keep	user	inside	designated	area	
•		Access	illegal	address	→	error	

•		During	context	switch,	kernel			
	saves/loads	base/limit	from	PCB	
•		User	not	allowed	to	change			
		base/limit	registers	 Stack

Heap
Data
Insns

Stack
Heap
Data
Insns

OS

app
#2

0x00000000

0xFFFFFFFF

Stack
Heap
Data
Insns

app
#1

0x00200000

DissaBsfied?

21

Don’t	worry,	that’s	not	the	final	
version	of	how	processors	provide	
memory	protecBon.		

Why	is	this	a	shame?	

Minimum	Hardware	Requirements

22

• 		Privileged	Instruc1ons	
• 		Timer	Interrupts	
• 		Memory	Protec1on

