
Adem Efe Gencer

November 20, 2015

 Project-5 was due November 18, 11:59 PM

• Prelim-2 is on November 24.

• Project-6 is due December 2, 11:59PM.

• Check Piazza for updates.

1. Implement a Unix-like file system layer:
ufsdisk.

2. Use free space bitmaps to keep track of free
and used blocks.

3. (Optional) Implement a file system
checker (i.e. fsck) to check the integrity of
your file system.

 File systems are built on one or more block stores.

 The block store abstraction provides:
 a disk-like interface: read / write blocks

 a sequence of blocks -- each typically a few kilobytes

 The block store abstraction doesn’t deal with:
 file naming,

 user permissions,

 distinguishing files from directories,

 …

 Simple interface:
 block_t block

 block of size BLOCK_SIZE

 nblocks() -> integer
 returns size of the block store in #blocks

 read(block number) -> block
 returns the contents of the given block number

 write(block number, block)
 writes the block contents at the given block number

 setsize(nblocks)
 sets the size of the block store

#define BLOCK_SIZE 512 // # bytes in a block

typedef unsigned int block_no; // index of a block

struct block { char bytes[BLOCK_SIZE]; };

typedef struct block block_t;

typedef struct block_if *block_if;

struct block_if {

void *state;

int (*nblocks)(block_if bif);

int (*read)(block_if bif, block_no offset, block_t *block);

int (*write)(block_if bif, block_no offset, block_t *block);

int (*setsize)(block_if bif, block_no size);

void (*destroy)(block_if bif);

};

 The underlying block store is partitioned into:
 A superblock:

 At block #0.

 A fixed number of inodeblocks:
 From block #1 to #inodeblocks.

 The #inodeblocks is given in superblock.

 A fixed number of freebitmapblocks:
 From #inodeblocks+1 to (#inodeblocks+#freebitmapblocks).

 The #freebitmapblocks is stored in superblock.

 Remaining blocks:
 Datablocks, free blocks, indirect blocks.

remaining blocksinode
blocks

super
block

freebitmap
blocks

Blocks:

Block #: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

struct ufs_superblock {

unsigned int magic_number; // magic number of ufsdisk

block_no n_inodeblocks; // # ufs_inodeblocks

block_no n_freebitmapblocks; // # freebitmap blocks

};

#define INODES_PER_BLOCK (BLOCK_SIZE / sizeof(struct ufs_inode))

struct ufs_inodeblock {

struct ufs_inode inodes[INODES_PER_BLOCK];

};

#define REFS_PER_INODE 15

struct ufs_inode {

block_no nblocks; // total size of the file

block_no refs[REFS_PER_INODE];

};

#
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

:Data block

:Direct pointer

:Indirect pointer

:Doubly Indirect
pointer

:Triply Indirect
pointer

:Number of blocks

:Indirect block

KEY

…
…

… …

…

…

…

…

…

…

:Other data blocks

:Other indirect
blocks…

0101001
010101…

remaining blocksinode
blocks

super
block

freebitmap
blocks

Blocks: …

0: block is not in use
1: block is in use

 Each freebitmap block: a block of bits.

 How many freebitmap blocks, f, do I need?

𝒇 =
𝑛𝑏𝑙𝑜𝑐𝑘𝑠 − 1 −

𝑛_𝑖𝑛𝑜𝑑𝑒𝑠
𝐼𝑁𝑂𝐷𝐸𝑆_𝑃𝐸𝑅_𝐵𝐿𝑂𝐶𝐾

1 + 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸 ∗ 23

 Verifies the consistency of your filesystem – e.g. try
fsck (UNIX), chkdsk (Windows).

 If system crashes, filesystem may be corrupted.

 Checks filesystems -- and repairs fixable issues if
broken.
 a datablock is in use but marked as free.

 a particular block is both an indirblock and datablock.

 a particular datablock has been used more than once.

 other issues…

 See treedisk_chk.c code for an example file system
checker.

 Use the skeleton code:
 ufsdisk.c

 ufsdisk.h

 Makefile:
 Add ufsdisk.o to the list of OBJECTS.

 This is the last project!

 Begin early so you have time to study for the finals.

 Come see TAs in office hours.

 Use Piazza: read / post.

