Project-6: Unix-like File
System Layer

Adem Efe Gencer

November 20, 2015

Announcements

Project-5 was due November 18, 11:59 PM
Prelim-2 is on November 24.

Project-6 is due December 2, 11:59PM.
Check Piazza for updates.

Project Scope

Implement a Unix-like file system layer:

ufsdisk.

Use free space bitmaps to keep track of free
and used blocks.

(Optional) Implement a file system
checker (i.e. fsck) to check the integrity of
your file system.

Recap: Intro

» File systems are built on one or more block stores.

» The block store abstraction provides:
a disk-like interface: read / write blocks
a sequence of blocks -- each typically a few kilobytes

» The block store abstraction doesn’t deal with:
file naming,
user permissions,
distinguishing files from directories,

Recap: Block Store Abstraction

» Simple interface:
block_t block
block of size BLOCK SIZE
nblocks() -> integer
returns size of the block store in #blocks
read(block number) -> block
returns the contents of the given block number
write(block number, block)
writes the block contents at the given block number

setsize(nblocks)
sets the size of the block store

Recap: block_if.h

#define BLOCK_SIZE 512 /| # bytes in a block
typedef unsigned int block_no; // index of a block

struct block { char bytes|[BLOCK_SIZE]; };
typedef struct block block_t;

typedef struct block_if *block_if;

struct block_if {
void *state;
int (*nblocks)(block_if bif);
int (*read)(block_if bif, block no offset, block t *block);
int (*write)(block _if bif, block_no offset, block t *block);
int (*setsize)(block_if bif, block_no size);

void (*destroy)(block_if bif);

A Unix-like file system layer: ufsdisk

e The underlying block store is partitioned into:
A superblock:
At block #o.
A fixed number of inodeblocks:
From block #1 to #inodeblocks.
The #inodeblocks is given in superblock.
A fixed number of freebitmapblocks:
From #inodeblocks+1 to (#inodeblocks+#freebitmapblocks).
The #freebitmapblocks is stored in superblock.
Remaining blocks:
Datablocks, free blocks, indirect blocks.

Ufsdisk: layout

Block #: Ol =TI S Bl e O 10 ~1letd - 13 14 15
Blocks: -l...l..-...l..-
‘_'-H | | |

super inode freebitmap remaining blocks

block blocks blocks

Ufsdisk: superblock (1 per underlying

blockstore)
struct ufs_superblock {
unsigned int magic_number; // magic number of ufsdisk
block no n_inodeblocks; // # ufs_inodeblocks

block_no n_freebitmapblocks; // # freebitmap blocks

Ufsdisk: inodeblock

#define INODES PER BLOCK (BLOCK_SIZE / sizeof(struct ufs_inode))

struct ufs_inodeblock {
struct ufs_inode inodes[INODES_PER BLOCK];

N

Ufsdisk: inode (1 per virtual blockstore)
#define REFS_PER_INODE 15

struct ufs_inode {
block no nblocks; // total size of the file
block no refs|REFS_PER INODE];

I

Ufsdisk: inode (1 per virtual blockstore)

KEY

:Data block

:Indirect block

:Number of blocks
:Direct pointer
:Indirect pointer

:Doubly Indirect
pointer

‘Triply Indirect

pointer

:Other data blocks

:Other indirect

blocks

Free space bitmaps
Blocks: -.......-.-...-

\—Y—, ‘ | | el
super inode freebitmap remaining blocks
block blocks blocks

o: block is not in use
1: block is in use

Utsdisk: freebitmap blocks

Each freebitmap block: a block of bits.
How many freebitmap blocks, f, do I need?

i pTh o e n_inodes
it INODES PER BLOCK

1+ BLOCK_SIZE * 23

File system checker

» Verifies the consistency of your filesystem - e.g. try
fsck (UNIX), chkdsk (Windows).

* If system crashes, filesystem may be corrupted.

* Checks filesystems -- and repairs fixable issues if
broken.
a datablock is in use but marked as free.
a particular block is both an indirblock and datablock.
a particular datablock has been used more than once.
other issues...

General hints...

 See treedisk_chk.c code for an example file system
checker.

e Use the skeleton code:
ufsdisk.c

ufsdisk.h

» Makefile:
Add ufsdisk.o to the list of OBJECTS.

Concluding thoughts

This is the last project!

Begin early so you have time to study for the finals.
Come see TAs in office hours.

Use Piazza: read / post.

