
Project 4:
 Reliable Networking

presented by Kai Mast

Announcements
● Project 4 is already released
● I assume you’ve read the project description
● Due November 4th
● This is a pretty complex project ⇨ Start early!

UDP TCP

Internet Protocol

Ethernet (or similar) Host OS UDP Stack

network.h

minimsg minisocketTransport Layer

Network Layer

Link Layer

Our network stack vs. the real world

TCP/IP Stack PortOS Network Stack

Minisocket is a simplified TCP
● Protocol is connection oriented

○ You must find a way to establish a connection between two endpoints

● Data is sent as a continuous stream of bytes
○ Messages are an application level concept
○ Minisocket must maintain correct ordering

● No limit on message sizes
○ You must fragment and reassemble the data

 State Machine

Listening

Connecting

Fail

connection failed

minisocket_client_create

minisocket_server_create

Connected

received
connection

connection
accepted

Sending

message
sent minisocket_send

Receiving

minisocket_receive

message
received

either side calls
minisocket_close

Closed

other party
doesn’t reply

Of course, it’s much more complicated...

TCP State Machine
Source: Wikipedia/Cube00
License: CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:Cube00
http://creativecommons.org/licenses/by-sa/3.0

What can go wrong?
● Any party can die
● Messages can get lost
● Data might be reordered
● Network might be partitioned

Welcome to the fun world of distributed systems!

Three-Way Handshake

Client Server
MSG_SYN

MSG_SYNACK

MSG_ACK

Non-blocking protocol
● Any packet might be lost
● Will be resent up to seven times
● Timeout doubles every time

Initial Timeout: 100ms
⇛ Give up after 12.7s

Messages can get lost

Client Server

MSG_SYNACK

MSG_ACK

Lost

MSG_SYN

MSG_SYN

Timeout

Messages can get lost

Client Server

MSG_ACK

MSG_SYN

Timeout

MSG_SYNACK

MSG_SYNACK

Lost

Note: In this case both parties might retransmit

Messages can get lost

Client Server

MSG_ACK

MSG_SYN

Timeout

MSG_SYNACK

Lost
MSG_ACK

MSG_SYNACK

Messages can get lost multiple times

Client Server

MSG_SYNACK

MSG_ACK

Lost

MSG_SYN

Timeout

Lost

MSG_SYN

MSG_SYN

Timeout

SEQ and ACK Numbers

Sender Receiver

MSG_ACK with
ack_number=104

MSG_ACK with
seq_number=98 and “hodor”

seq_number shows current write
position
⇨ is used to order messages

ack_number shows total received bytes
⇨ is used to resend lost messages

Note: This is a symmetric channel. Both
parties can send and receive.

Again, messages can get lost

Sender Receiver
seq_number=98 with “hodor”

Lost

ack_number=104

Timeout

seq_number=98 with “hodor”

Again, messages can get lost

Sender Receiver
seq_number=98 with “hodor”

ack_number=106

Lost

Timeout

seq_number=98 with “hodor”

ack_number=106

Closing connections

Client Server
MSG_FIN

MSG_ACK

Again, this is a symmetric
protocol.
Both sides can close the
connection.

Minisocket Header
Bytes 0 1 2 3 4 5 6 7

0

8

16

24

source_port

destination_port

source_addressprotocol

destination_address

type seq_number

ack_number

The first 20 bytes are identical to minimsg_header!

Use protocol field to multiplex protocols.

Tricky Part: How to implement timeout?
Remember that:

● Parties might never respond
● Multiple threads can call minisocket_send() on the same port

Things you must avoid:

● Putting threads on the run queue more than once
● Thread keeps waiting after message is received
● Thread blocks infinitely

Tricky Part: How to implement timeout?

Waiting

Setup alarm &
Put thread on wait
queue for port

Alarm Fires

Remove thread from port’s wait queue
& wake up thread

Deregister alarm
& wake up thread

ACK received

To make it a little easier
● You don’t have to implement congestion control
● Sending one packet at a time is sufficient
● minimsg_send can block until corresponding ACK is received

But you can implement window sizes > 1 if you want to!
(and have the time…)

Where to start
● Think about the state machine from earlier!
● Try to make connection setup and termination work first.
● Test with no loss and single-thread access

Test all the code!
● What happens if you send very large messages?
● Can you handle a lot of messages?
● What if there is loss?
● If one party crashes the other one shouldn’t.
● What if multiple threads are sending/receiving from the same port?

Test all the code!
In network.c:

double loss_rate = 0.0;

double duplication_rate = 0.0;

bool synthetic_network = false;

These change the behavior of the
network

You have to set this to true
for the other values to have
any effect!

Updating your project
Merge by hand

● Copy new function signatures header files
● Make sure everything compiles!

Files that changed:
network, miniheader, Makefile

New files:
minisocket, conn-network[1-3]

Good Luck

As always, if you need help, come to office hours!

Questions?

