
Project Overview Implementation Details Concluding Advice

Project 1: Non-preemtive Multitasking
CS 4411: OS Practicum

Kai Mast

Department of Computer Science
Cornell University

September 4, 2014

Kai Mast — Project 1: Non-preemtive Multitasking 1/34

Project Overview Implementation Details Concluding Advice

Announcements

Project 1 is on online; due on September 16th
Make sure you’re on CMS and have a project partner
Up to 2 ”free” late days for this project
Up to 4 late days the whole semester

Kai Mast — Project 1: Non-preemtive Multitasking 2/34

Project Overview Implementation Details Concluding Advice

Contents

1 Project Overview

2 Implementation Details
Queues
Minithreads
Context Switching
Semaphores

3 Concluding Advice

Kai Mast — Project 1: Non-preemtive Multitasking 3/34

Project Overview Implementation Details Concluding Advice

Goals of this Project

Revive your C skills
Learn how threading in scheduling work
Implement basic synchronization primitives
No practice without theory
⇒ make sure you know how they work ¨̂

Kai Mast — Project 1: Non-preemtive Multitasking 4/34

Project Overview Implementation Details Concluding Advice

Project Structure

FIFO Queues

Scheduler Semaphores

Minithreads

Sample Application

Not to be solved in this order.

Kai Mast — Project 1: Non-preemtive Multitasking 5/34

Project Overview Implementation Details Concluding Advice

Contents

1 Project Overview

2 Implementation Details
Queues
Minithreads
Context Switching
Semaphores

3 Concluding Advice

Kai Mast — Project 1: Non-preemtive Multitasking 6/34

Project Overview Implementation Details Concluding Advice

Starting Point

To implement
Interfaces for the queue (queue.h), minithreads
(minithread.h), and semaphores (synch.h).

Helper functions
Machine specific parts (machineprimitives.h).

Context switching, stack initialization, etc.
No need to modify this code!
No need to write your own context switching
implementation!

Kai Mast — Project 1: Non-preemtive Multitasking 7/34

Project Overview Implementation Details Concluding Advice

Starting Point
File Structure

minithread.h

minithread.c*

machineprimitives.h

machineprimitives.c

synch.h

synch.c*

queue.h

queue.c*

* need to be implemented

Kai Mast — Project 1: Non-preemtive Multitasking 8/34

Project Overview Implementation Details Concluding Advice

Queues
Motivation

Every system needs efficient datastructures
FIFO queues are useful in many parts of an OS

Think of how a scheduler could work
Or how processes could queue up for a resource

Kai Mast — Project 1: Non-preemtive Multitasking 9/34

Project Overview Implementation Details Concluding Advice

Queues
Linked Lists

Queue

void* void* void* null

head
tail

next next next

Where is the data?

Kai Mast — Project 1: Non-preemtive Multitasking 10/34

Project Overview Implementation Details Concluding Advice

Queue Example
Usage:
v o i d ∗ i t em = NULL ;
i n t r e t = queue dequeue (run queue , &item) ;
// i tem w i l l p o i n t to someth ing i f r e t == 0

Internals:
i n t queue dequeue (q u e u e t ∗queue , v o i d ∗∗ i t em) {

[. . .]
∗ i t em = queue−>head−>datum ;
[. . .]
}

What if the queue is empty?
Kai Mast — Project 1: Non-preemtive Multitasking 11/34

Project Overview Implementation Details Concluding Advice

Kernel Threads

Kai Mast — Project 1: Non-preemtive Multitasking 12/34

Project Overview Implementation Details Concluding Advice

User Threads

This is what minithreads will do!

Kai Mast — Project 1: Non-preemtive Multitasking 13/34

Project Overview Implementation Details Concluding Advice

Minithread Structure

Need to create a Thread Control Block (TCB) for each
thread
The TCB must have:

Stack top pointer (saved esp)
Stack base pointer (points to allocated stack)
Thread identifier
Anything else you find useful

Kai Mast — Project 1: Non-preemtive Multitasking 14/34

Project Overview Implementation Details Concluding Advice

Setting up the stack

minithread_allocate_stack allocates memory
minithread_initialize_stack set up stack content

stack_top

0xff0 final_proc addr

0xfec final_arg

0xfe8 body_proc addr

0xfe4 body_arg

0xfe0 root_proc addr

stack_base

Kai Mast — Project 1: Non-preemtive Multitasking 15/34

Project Overview Implementation Details Concluding Advice

Context switching

Swap the currently executing thread with one from the
run queue.
State to save:

Registers
Program counter
Stack pointer

We give you a function for this:
v o i d m i n i t h r e a d s w i t c h (s t a c k p o i n t e r t ∗

o l d t h r e a d s p , s t a c k p o i n t e r t ∗ n e w t h r e a d s p) ;

Kai Mast — Project 1: Non-preemtive Multitasking 16/34

Project Overview Implementation Details Concluding Advice

Context Switching
Initial state

old_thread_sp new_thread_sp

state

esp

Kai Mast — Project 1: Non-preemtive Multitasking 17/34

Project Overview Implementation Details Concluding Advice

Context Switching
Push old context

old_thread_sp new_thread_sp

state

state

esp

Kai Mast — Project 1: Non-preemtive Multitasking 18/34

Project Overview Implementation Details Concluding Advice

Context Switching
Change Stack Pointers

old_thread_sp new_thread_sp

state

state

esp

Kai Mast — Project 1: Non-preemtive Multitasking 19/34

Project Overview Implementation Details Concluding Advice

Context Switching
Pop off new context

old_thread_sp new_thread_sp

state

esp

Kai Mast — Project 1: Non-preemtive Multitasking 20/34

Project Overview Implementation Details Concluding Advice

Bootstrapping

v o i d m i n i t h r e a d s y s t e m i n i t i a l i z e (p r o c t mainproc ,
a r g t mainarg)

Starts up the system, and initializes global datastructures
Creates a thread to run mainproc(mainarg)
This should be where all queues, global semaphores, etc.
are initialized.

Kai Mast — Project 1: Non-preemtive Multitasking 21/34

Project Overview Implementation Details Concluding Advice

Bootstrapping

How do we get from a full-blow unix process to a
minithread?
Host thread can be reused as idle thread

No need to allocate stack here
TCB’s stacktop and stackbase should be NULL
Don’t try to clean up this stack!

The program should never really exit, so it is a good idea
to use the host thread (which never should be
terminated) as the idle thread

Kai Mast — Project 1: Non-preemtive Multitasking 22/34

Project Overview Implementation Details Concluding Advice

Scheduling

We haven’t specified any preemption. We need a way to
voluntarily switch between threads.
void minithread_yield()
Use minithread_switch to implement
minithread_yield
What happens to the yielding thread?
Is this a fair execution model?

Kai Mast — Project 1: Non-preemtive Multitasking 23/34

Project Overview Implementation Details Concluding Advice

Minithread Lifecycle

Kai Mast — Project 1: Non-preemtive Multitasking 24/34

Project Overview Implementation Details Concluding Advice

Concurrency 101

Race condition: result of computation depends on the
relative running speed of threads.

Multiple concurrent threads reading from/writing to the
same memory location.
E.g. two threads manipulating a linked list.

Atomic operation: either the operation goes to
completion, or fails altogether
Deadlock: Two operations/threads wait on each other
Starvation: An operation never gets to run and thus
never completes

Kai Mast — Project 1: Non-preemtive Multitasking 25/34

Project Overview Implementation Details Concluding Advice

Synchronization
We want critical section of code to run without other threads
interfering.
// Shared between t h r e a d s
queue p r o c e s s q u e u e ;
l o c k p r o c e s s q u e u e l o c k ;

v o i d m a n i p u l a t e q u e u e {
l o c k a c q u i r e (p r o c e s s q u e u e l o c k) ;
// c r i t i c a l s e c t i o n b e g i n s
queue dequeue (p r o c e s s q u e u e) ;
queue append (m i n i t h r e a d s e l f) ;
// c r i t i c a l s e c t i o n ends
l o c k r e l e a s e (p r o c e s s q u e u e l o c k) ;

}

Kai Mast — Project 1: Non-preemtive Multitasking 26/34

Project Overview Implementation Details Concluding Advice

Semaphores
One (of many) synchronization primitives

You decide how many threads can concurrently hold the
semaphore when initializing it.
Semaphore value is manipulated atomically

semaphore_P decrements the value by 1
semaphore_V increments the value by 1

Threads wait on a semaphore
if count is 0, semaphore_P blocks
if count is 0, semaphore_V wakes up waiting threads

Special case: binary semaphore is a lock

Kai Mast — Project 1: Non-preemtive Multitasking 27/34

Project Overview Implementation Details Concluding Advice

Contents

1 Project Overview

2 Implementation Details
Queues
Minithreads
Context Switching
Semaphores

3 Concluding Advice

Kai Mast — Project 1: Non-preemtive Multitasking 28/34

Project Overview Implementation Details Concluding Advice

Test your code!

We supply some basic tests.
Read them to understand how minithreads work

Statistically, there are a large number of untested
potential bugs.
Write some (or many?) tests of your own (be abusive to
minithreads; it can take it).

Kai Mast — Project 1: Non-preemtive Multitasking 29/34

Project Overview Implementation Details Concluding Advice

Coding Style
Avoid unnecessary polling

w h i l e (some var != 42) {
m i n i t h r e a d y i e l d () ;

}

Unnecessary context switches are expensive and should be
avoided!1

1Remember this when implementing your semaphores and scheduler.
Kai Mast — Project 1: Non-preemtive Multitasking 30/34

Project Overview Implementation Details Concluding Advice

Coding Style
Comments

Comments make it easier for us to give you a good grade.
i n t x = 0 ; // s e t t he v a r i a b l e x to 0
a s s e r t (x == 0) ; //make s u r e t h a t t h i s x i s 0

...but shouldn’t be too verbose.2

2That example is too verbose
Kai Mast — Project 1: Non-preemtive Multitasking 31/34

Project Overview Implementation Details Concluding Advice

Coding Style
Variable names

Whats better?
i n t y 1 = 4 2 ;

or
i n t t h r e a d i d e n t i f i e r = 4 2 ;

Kai Mast — Project 1: Non-preemtive Multitasking 32/34

Project Overview Implementation Details Concluding Advice

Coding Style
Use const if possible

This will compile
i n t s o m e c o n s t a n t = 1 ;

// somebody wrote = i n s t e a d o f ==
i f (s o m e c o n s t a n t = 0)

d o s o m e t h i n g () ;

This won’t
c o n s t i n t s o m e c o n s t a n t = 1 ;

i f (s o m e c o n s t a n t = 0) // cannot a s s i g n to a c o n s t a n t
d o s o m e t h i n g () ;

Kai Mast — Project 1: Non-preemtive Multitasking 33/34

Project Overview Implementation Details Concluding Advice

Common Errors
Weak type system

i n t ∗m y i n t p o i n t e r = m a l l o c (s i z e o f (i n t)) ;
m y i n t p o i n t e r = 4 ;

This is probably not what you wanted to do.

Kai Mast — Project 1: Non-preemtive Multitasking 34/34

Project Overview Implementation Details Concluding Advice

Thanks

Have fun solving the project!

Slides inspired by previous TA’s: Sean Odgen, Robert Escriva, Z.
Teo, Ayush Dubey, et al.

Kai Mast — Project 1: Non-preemtive Multitasking 35/34

	Project Overview
	Implementation Details
	Queues
	Minithreads
	Context Switching
	Semaphores

	Concluding Advice

