

Massive data centers

- We've discussed the emergence of massive data centers associated with web applications and cloud computing
 - Generally use web services standards
 - Run software like MapReduce (Hadoop), GFS
 - Might include tens of thousands or millions of machines
- Enormous economies of scale
 - Storage becomes remarkably cheap: 10x less than anything you can buy for "home or office use"
 - CPU cycles start to seem free

2

Can we do more?

- Companies like Google, Amazon want to
 - Keep those machines busy: If you plan to run them, the more work they can do the better
 - · Migrate things onto them that generate revenue
- Amazon: leader in renting virtual machine images
 - Instead of running applications at home...
 - ... why not rent a cheap machine from Amazon and run your applications there?

Amazon EC2

- Amazon Elastic Compute Cloud (Amazon EC₂) is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers.
 - Web services interface
 - They give you as many virtual machines as you like... you can configure them as you wish
 - Pick the O/S and applications you need
- You pay only for resources you actually use

,

A huge success!

- Today Amazon hosts literally millions of virtual machines on EC2
 - The number actually running at any point in time varies
 - They migrate these machines within their data center to balance load and use their resources efficiently
- Thus one data center machine might host one VM image... or twenty of them
 - Idea is that you won't notice...

5

Amazon EC2: Capacity on demand

- Basic concept:
 - · Virtual machines running on Amazon hardware
 - Cost is \$0.10 \$0.80 per "instance hour"
 - Plus bandwidth & AMI storage
 - "Amazon Machine Image" Xen VM with special packaging

Amazon EC2: Capacity on demand

- Basic concept:
 - AMI is stored on Amazon S3
 - Internal traffic (S3 <-> EC2) isn't charged
 - SOAP / REST APIs to manage instances
 - Linux AMIs available, other operating systems are being ported
 - · But there's always QEMU...

Amazon EC2: Capacity on demand

- Most useful when:
 - You have "variable" demand for a service
 - You have needs which don't require sustained infrastructure
 - You have needs which can be met in a "sandbox"

Amazon EC2: Capacity on demand

- Recent developments:
 - Expanded instance specifications
 - 1, 2, or 4 cores, and a consistent CPU measuring scheme
 - 32 & 64 bit virtual CPUs
 - 1.7, 7.5, or 15 GB of RAM per instance
 - Alternate companies starting to provide similar services
 - With SLAs and without the "beta" label

Infrastructure Differences

- Instances are on dynamic IP addresses sitting outside the local campus network
 - Handshake & heartbeat processes are useful
- Instances have ephemeral storage space
 - Lack of local persistence is not a barrier to entry
- Be careful of data stored on the ephemeral drive
- Instances need to be monitored for availability
 - Build in safeguards to ensure instances are both available when you need them, and shut down when you don't

Practical challenges

- · Applications share platforms without knowing it
 - This can defeat careful performance tuning
 - In fact little is understood about tuning applications to perform well on virtualized platforms like EC2
- Xen itself continues to need work
 - Device drivers run in special dedicated VM partitions
 - Poses a number of strange new security challenges...

Practical challenges

- Front end: increasing a "thin client"
 - O/S on your computer focuses on display
 - Applications are running on the hosted VMM in the data center, accessed via the network
- This can mean very slow, creaky graphics performance because traditional graphics interfaces
 - · Assume local applications
 - Assume DMA access to bit-mapped images and textures

12

Practical challenges: Security

- Consider a hospital
 - Perhaps doctors, nurses carry a secure id card
 - They put it in a card reader on machine they will use
- With a "real" machine, card has many properties of a TPM...
 - But if the platform has been virtualized and is running at Amazon on EC2, physical security mechanisms can't be used anymore
 - A step backwards relative to TPM-style guarantees

13

Challenges for Amazon itself?

- These revolve around power costs and savings
 - Increasingly clear that the true cost of running a data center is dominated by electric power
 - Leads to a focus on ways to reduce power consumption
- Look at talk by James Hamilton (Microsoft Cloud Computing expert now working at Amazon.com)
 - Talk was delivered at LADIS 2008
 - http://www.cs.cornell.edu/projects/ladis2008/materials/JamesRH_Ladis2008.pdf

14