File Systems

Ken Birman

File Systems

© Three criteria for long-term information storage:
¢ Should be able to store very large amount of information
* Information must survive the processes using it

 Should provide concurrent access to multiple processes
 Solution:

« Store information on disks in units called files

o Files are persistent, and only owner can explicitly delete it

o Files are managed by the OS

© File Systems: How the OS manages files!

05/03/2009

Storing Information

© We often need to store information
* Sometimes, the stored form has a life its own
« Pictures of your friends, videos, songs
¢ Sometimes, the stored data is for recovery
« In case you want to restart the game later

« Or perhaps your application is a little fragile and crashes now
and then

« Files are a good way for processes to cooperate
» YoudoX, I'll do Y and we'll merge the results

File Naming

© Motivation: Files abstract information stored on disk
¢ You do not need to remember block, sector, ...
¢ We have human readable names
* How does it work?
¢ Process creates a file, and gives it a name
« Other processes can access the file by that name
* Naming conventions are OS dependent
« Usually names as long as 255 characters is allowed
« Digits and special characters are sometimes allowed
« MS-DOS and Windows are not case sensitive, UNIX family is

Today: User’s perspective of FS

* Files
¢ Naming, structure, types, access, attributes, operations
¢ Directories
e Structure, path and operations
* Mounting file systems
e File Protection

File Extensions

¢ Name divided into 2 parts, second part is the extension
¢ On UNIX, extensions are not enforced by OS

* However C compiler might insist on its extensions
« These extensions are very useful for C

* Windows attaches meaning to extensions
« Tries to associate applications to file extensions
¢ You can see and even change these if you like

File Structure

(a) Byte Sequence: unstructured, most commonly used
(b) Record sequence: r/w in records, used earlier
(c) Complex structures, e.g. tree

- Data stored in variable length records; location decided by OS
1 Biyte 1 Record

[t Teon Joos | [ocn] en [0w] [Porw] Pt Jrem]

{8} (&) i)

Executables and Archives

= —— e
e o
| BT] S
Entry peant Pesiecton
.
- o
Ralocaton
b
—.
=

File Types

* 5 types of files
¢ Regular files: contain user information
« Directories: system files for maintaining structure of FS
¢ Character special files: for serial I/O in UNIX
* Block special files: to model disks in UNIX
¢ Symbolic links
 Regular files are usually:
 ASCII files: lines of text
« Useful for editing, portability across applications
* Binary files: usually have an internal structure
« Lookat executables and archives in UNIX
« Every OS needs a way to recognize its own executable!

05/03/2009

File Access

© Sequential access
e read all bytes/records from the beginning
¢ cannot jump around, could rewind or forward
¢ convenient when medium was magnetic tape
* Random access
* bytes/records read in any order
« essential for database systems
e 2 possible reads
« Specify disk block in read
» move file marker (seek), then read or ...

File Attributes

* File-specific info maintained by the OS
« File size, modification date, creation time, etc.
 Varies a lot across different OSes
© Some examples:
¢ Name - only information kept in human-readable form
o Identifier - unique tag (number) identifies file within file system
* Type - needed for systems that support different types
¢ Location - pointer to file location on device
e Size - current file size
¢ Protection - controls who can do reading, writing, executing

» Time, date, and user identification - data for protection, security,
and usage monitoring

File Operations

e File is an Abstract Data Type
¢ Some operations:
* Createa file: find space in FS, add directory entry
¢ Open: system fetches attributes and disk addresses in memory
¢ Writea file: locate file and write at current position
« Might need to increase the size attribute
¢ Read a file: locate file, read from current position, store in buffer
« Read/write pointer can be stored as per-process file pointer

FS on disk

¢ Could use entire disk space for a FS, but
* A system could have multiple FSes
* Want to use some disk space for swap space

* Disk divided into partitions or minidisks
¢ Chunk of storage that holds a FS is a volume

* Directory structure maintains info of all files in the volume
« Name, location, size, type, ...

i i — W
partition A o sk 2
disk 1
dractony parifion G e,
partition B Tian
sk 3

Single-level Directory

© One directory for all files in the volume
 Called root directory

* Used in early PCs, even the first supercomputer CDC 6600
 Pros: simplicity, ability to quickly locate files
¢ Cons: inconvenient naming (uniqueness, remembering all)

05/03/2009

Directories

e Directories/folders keep track of files
¢ Isasymbol table that translates file names to directory entries
e Usually are themselves files
* How to structure the directory to optimize all of the foll.:
e Searcha file
¢ Createa file
¢ Deletea file
e List directory
¢ Renamea file
e Traversing the FS

Directory

Files

ree-structured Directory

* Directory is now a tree of arbitrary height
¢ Directory contains files and subdirectories
¢ Abit in directory entry differentiates files from subdirectories

root | s | bin[ovograrma]

[st | o [ctm [[t [coume

o \béé

wo-level directory

© Each user has a separate directory

master file

|
oy | 1001]] e

W

cat Jlﬂ'ﬂ. ix:durafa

brecay oo [2o [o Tot] [[oum][2 Tt [x|
| bd0060b006608

* Solves name collision, but what if user has lots of files
* Files need to be addressed by path names

* Allow user’s access to other user’s files

* Need fora search path (for example, locating system files)

| user i

Path Names

» To access a file, the user should either:
¢ Go to the directory where file resides, or
« Specify the path where the file is
¢ Path names are either absolute or relative
¢ Absolute: path of file from the root directory
¢ Relative: path from the current working directory
* Most OSes have two special entries in each directory:
 “” for current directory and “.” for parent

Links

e In Linux, a name is really a “link”

¢ We adopt the view that the name (path) leads us to a
kind of unique file identification number

e Called an inode number and, on a given disk, it refers to
the data structure representing the file

e In Linux, multiple names can link to the same inode!

¢ The file ends up with more than one name but there is
just one file and everyone shares it

* Permissions are a property of the file, not its name(s)

05/03/2009

pr—

Shortcuts, Symbolic Links

* On Windows, there is a different way to create a kind
of link

* A file on Windows only has one real name
* But you can create a “shortcut” to the file

¢ Linux has these too, in addition to true links. Calls
them “symbolic links”

A shortcut, or symbolic link, is a file that has another
file name inside it.

Pros and Cons

© True links have advantages and disadvantages

¢ The main disadvantage is that deleting a file may not get
rid of it, which can be confusing

e E.g. if two names point to “memo” and you delete one
name (one link), the other still points to the file
© But a nice feature of a true link is that it lets you think
of the name space separately from the files per-se

P

cyclic Graph Directories

© Share subdirectories or files

Pros and Cons

¢ Symbolic links (shortcuts)

« Are super flexible: the file doesn’t even need to exist when you
make the shortcut (like a URL)
 But this is a problem too: the file has no idea that other

names point to it, so when you delete the file, it goes away
even if symbolic links persist

* Thought question: suppose that “memo” has a symbolic link
to it called “Mom’s Memo” and now I delete memo and
create a new file called memo. What happens if I open
“Mom’s Memo”? What it was a real link?

Acyclic Graph Directories

* How to implement shared files and subdirectories:
¢ Why not copy the file?
¢ New directory entry, called Link (used in UNIX)
« Link is a pointer to another file or subdirectory
« Links are ignored when traversing FS
« Inin UNIX, fsutil in Windows for hard links
« In-sin UNIX, shortcuts in Windows for soft links
¢ Issues?
¢ Two different names (aliasing)
o If dict deletes list = dangling pointer
« Keep backpointers of links for each file
« Leave the link, and delete only when accessed later
« Keep reference count of each file

PR

File System Mounting

* Mount allows two FSes to be merged into one
¢ For example you insert your floppy into the root FS

mount("/dev/fd0", */mnt", 0)

bin dev lib mnt usr bin dev lib usr

(a) (b)

P

Executables in mounted file sys

© Avery controversial feature!
e For example, in a USB disk

© Executables enable features like “autoplay”... which are
extremely popular
¢ Although there are other ways to support autoplay, often
it is done by running an “autoexec” file from the root
© But should the OS trust the contents of a USB?
¢ Who has it been sleeping with?

PR

Categories of Users

¢ Individual user
¢ Log in establishes a user-id
¢ Might be just local on the computer or could be through
interaction with a network service
© Groups to which the user belongs
¢ For example, “ken” is in “csfaculty”
¢ Again could just be automatic or could involve talking to
a service that might assign, say, a temporary
cryptographic key

05/03/2009

PSS

Remote file system mounting

* Same idea, but file system is actually on some other
machine
* Implementation uses remote procedure call
¢ Package up the user’s file system operation
e Send it to the remote machine where it gets executed
like a local request
e Send back the answer
* Very common in modern systems

PR

File Protection

* File owner/creator should be able to control:
« what can be done
¢ by whom

* Types of access
¢ Read
¢ Write
¢ Execute
¢ Append
¢ Delete
e List

P————

Linux Access Rights

« Mode of access: read, write, execute

* Three classes of users RWX
a) owner access i i W

RWX

b) group access 6 =110,

RWX

c) public access 1! =001

« For a particular file (say game) or subdirectory, define an
appropriate access.

uwvaup public

chmod 761 game

PR

Unix executable files

¢ In Linux, an executable file can be

o Atext file. In this case Linux runs the shell program on
the file (treats the file as if it contained commands)

e The first line of the file can specify which shell you
prefer for it to use (Unix has several shells)

* Avery popular one is “Perl”

 Linux executables can also specify
e Setuid: means “run under the UID of the file owner”
e Setgid: means “un under the GID of the file owner”

e ... used to control access to special applications, like
medical records or accounting systems

P

More issues with Linux

* Just a single owner, a single group and the public
¢ Pro: Compact enough to fit in just a few bytes
¢ Con: Not very expressive
© Access Control List: This is a per-file list that tells who
can access that file
¢ Pro: Highly expressive
 Con: Harder to represent in a compact way

Security and Remote File Systems

© Recall that we can “mount” a file system
e Local: File systems on multiple disks/volumes
* Remote: A means of accessing a file system on some
other machine

« Local stub translates file system operations into messages,
which it sends to a remote machine

« Over there, a service receives the message and does the
operation, sends back the result

« Makes a remote file system look “local”

05/03/2009

PSS

Setuid “root” (“administrator”)

e This is a very risky feature but common
e It allows a program to gain complete control
¢ Overrides all file system and other permissions

* Basically, “become god”

© Unix allows it... much debate about the right way to
handle USB disks that contain setuid programs....

P ACLs

Unix Remote File System Security

© Since early days of Unix, NFS has had two modes
¢ Secure mode: user, group-id’s authenticated each time
you boot from a network service that hands out
temporary keys
e Insecure mode: trusts your computer to be truthful
about user and group ids
© Most NFS systems run in insecure mode!
e Because of US restrictions on exporting cryptographic
code...

PR

Spoofing
© Question: what stops you from “spoofing” by building
NFS packets of your own that lie about id?
* Answer?
¢ In insecure mode... nothing!
¢ In fact people have written this kind of code

* Many NFS systems are wide open to this form of attack,
often only the firewall protects them

05/03/2009

