
Project 5: Ad-Hoc
Networking

Owen Arden
owen@cs.cornell.edu

Modified from last year’s slides

Miniroute
• Ad-hoc networking layer

• Allows multi-hop wireless communication
without the need for infrastructure

• Low-cost

• Quick deployment time

• No single point of failure

• Based on Dynamic Source Routing (DSR)
• http://www.cs.cornell.edu/People/egs/615/johnson-dsr.pdf

What is routing?
• Packets that arrive at

your machine may
not be for you

• Add a routing layer
between network and
transport layer

• minimsg/sockets
works on top

User Application

TCP-like protocol

UDP-like protocol

Network

Routing

Dynamic Source Routing
• To deliver a packet when the route is

unknown, broadcast a route discovery
packet

• In-range hosts re-broadcast discovery
packet, attaching themselves as part of
the route

• When destination is reached, a reply is
sent along the reversed path.

Dynamic Source Routing

• If the source receives a reply, add to the
route cache, and use route to send data.

• For simplicity, route cache entries expire
in 3 seconds to prevent stale routes

• Real protocols have error handling that
allows routes to be re-discovered only
when necessary

Unreachable hosts
• How does the protocol terminate if a host is

unreachable?

• A TTL (time to live) field initialized to
MAX_ROUTE_LENGTH is decremented on each re-
broadcast

• If TTL is 0 and host is not the destination, do not
rebroadcast

• A host should not re-broadcast a discovery request it
has broadcasted before

• Route discovery IDs are assigned per packet to prevent
redundant re-broadcasts.

Implementation
• Replace network_send_pkt with
miniroute_send_pkt

• Update network handler

• Recognize miniroute header

• Routing control packets must be passed to
routing thread

• Data packets delivered to ports/socket if arrived
at destination, otherwise routed to next-hop

Implementation
• Routing thread

• State machine for handling and routing packets

• Use network_bcast_pkt for broadcasts

• Route cache

• SIZE_OF_ROUTE_CACHE entries

• Invalidate after timeout (with or without alarms)

• Aim for average access time of O(1) or O(logN)

• Table for node discovery packet IDs

• Can assume some max lifetime of an ID

Instant Ad-Hoc Messaging

• Write an IM application using miniroute

• Requires reading input from user

• Add read.c, read.h, read_private.h

• Include “read_private.h” in minithread.c

• Add miniterm_initialize()

• Use miniterm_read() to read data from the
keyboard

Additional Changes
• In network.h

• Set BCAST_ENABLED to 1

• Set BCAST_ADDRESS

• X.Y.Z.255 for most networks, where X,Y,Z are the
first three octets of your IP

• Try setting up an ad-hoc network between laptops

• Set BCAST_TOPOLOGY_FILE

• see project description for format

Additional Requirements
• At any host, there must be at most a single routing

discover request for any destination at any one time:

• Multiple threads should not trigger multiple requests for
the same destination

• Only one cache entry per destination

• Use reply packets with the latest information

• Use structures and data-types provided in
miniroute.h

• Routing should work across groups, but other protocols
don’t have to

Additional Requirements
• Routing interoperability requires

routing header entries to be in network
order

• Every short, int, long, must be translated
to network order before being send, and
translated to host order after being
received.

• See functions in network.c

For the ambitious
• Routing cache does not need to have a timeout.
• Hosts detect broken links, send back errors.

• Source host can purge cache entry and discover new
route

• Requires integrity of each hop to be verified

• Hop-to-hop ACKs : very very inefficient

• Eavesdropping : each host waits for next hop to forward.

• Replace unicast hop to hop sends with broadcasts

• Additional filtering in network handler

Localized Route Patching

• Hop that discovered the broken route
perform a new route discovery
• Patch route and continue routing packet

• Route cache on both source/destination
should eventually be updated

Aggressive Caching

• Every reply/request/data packet routed
is an opportunity

• BUT- only some of the data is worth
caching, and is different depending on
whether it is a reply/request/data pkt

Redundant Routes

• By keeping additional routes, packets
can be quickly re-routed if a route
breaks

• Can be re-routed on error at source, or
embedded in header to allow localized
re-routing

Hybrid Proactive/Reactive Routing

• See Prof. Sirer’s SHARP
http://www.cs.cornell.edu/courses/cs414/2004SP/papers/sharp.pdf

