Project 3: Unreliable datagrams

Owen Arden

owen@cs.cornell.edu
Upson 4126

All slides stolen from previous year. j

What do you have to do?

e Implement unreliable communication
Simulate (parts of) the UDP/IP protocol

Build a datagram networking stack

o Use the provided pseudo-network interface
(see "network.h”)

e Interface in ,minimsg.h”, skeleton code in
,minimsg.c” provided to fill in

o Implement ports to identify the endpoints
e Build a minimessage layer for thread /O

A glimpse at interface to implement

#define MINIMSG_MAX_MSG_SIZE (4096)
typedef struct miniport* miniport_t;
typedef char* minimsg_t;

void minimsg_initialize();

miniport_t miniport_local_create();
miniport_t miniport_remote_create(network_address_t addr, int id);
void miniport_destroy(miniport_t miniport);

int minimsg_send(miniport_t local, miniport_t remote, minimsg_t
msg, int len);

int minimsg_receive(miniport_t local, miniport_t* remote, minimsg_t
msg, int *len);

Networking pseudo-device (1)

e Allows communication between
minithreads systems

e Interrupt-driven implementation

Network_handler
o Similar to clock handler, same interrupts used
o Executed separately for each received packet
o Uses the stack of the current thread

e Should finish as soon as possible
o Initialized with "network initialize()”

Networking pseudo-device (2)

e Network handler receives a structure:
typedef struct
{

network address _t addr; I/ sender
char bufferfMAX_NETWORK_ PKT_SIZE]; // hdr+data
int size; /] size

} network_interrupt_arg_t;

Need to strip the header off the buffer

e Call “network initialize” function
After clock _initialize()

n n n
o lOIe € [U - [U U odU
» A I / A) C) /) / A\

Networking functions

e Network send pkt — sends a packet
Destination
Header (body, length)
Data (body,length)

e Header:

Extra information
o About the sender
o About the receiver

As small as possible

Miniports

e Data structures that represents endpoints

Network Device does not control which thread
processes a received packet

e Local ports:
Usually, used for listening
Not bound to any remote ports
Can receive from any remote port

e Remote ports:
Created when a packet is received
Bound to a “remote” port
Allows the receiver to reply

Miniports example (1)

e Ports 1,3 — local ports; 2 — remote port
e AB - Threads
e Sender A sends a message to Receiver B

oL

Sender Receiver

Miniports example (2)

e Minithread system creates the remote port 100
e Message is delivered to the local port
e B receives the message;

oE

Sender Receiver

Miniports example (3)

e B replies to A using the newly created remote port
e The message is relayed to A’s local port

o= .2

Sender Receiver

Miniports — how would they look like?

typedef struct miniport {
char port_type;
int port_number;

queue_t msg_queue;
semaphore_t msg_sem;
semaphore_t msg_mutex;

network _address t remote address;
int remote_port;
int remote _is_local;

} miniport;

Miniports — you can use unions

struct miniport ({
char type;
unsigned int portno;
union {
struct {

queue t receiver queue;
semaphore t queue lock;
semaphore t data ready;
} loc;
struct {
unsigned int portno;
network address t addr;
} rem;
b ou;

Miniports - hints

e | ocal communication
Note that miniport destroy function will be

called by the receiver
remote miniport as a pointer to a local port

miniport send implemented based on the
“remote port”

e Miniports
|dentified by numbers
Assigned them successive numbers
Local miniports — start from O
Remote miniports — start from 32768

Minimsg layer

e |dentifies the end-points of the
communication (ports)

The sender assembles the header used to
identifies the endpoints

The receiver
e examines the header
¢ Ildentifies destination

e Enqueues the packet in the right place, wakes
up any sleeping threads

Minimsg functions

e Minimsg_send:
Non-blocking

Parameters:
¢ local and remote ports
e The message and its length

Appends the header to the message
Sends the entire data using network_send

e Minimsg_receive:

Blocks the thread until it receives a message on the
specified port

Receives information about the remote port — used
to repl

Implementation hints

e Do not add unnecessary data to the header

Include the address of the sender (used later by the
ad-hoc routing protocol later)

e Port operations must be O(1)
e Do not waste resources
e Make sure a port in use is not reassigned

e Remote miniports are destroyed by the
application

e network initialize returns the ip address of
the machine

e Build other test cases

