
CS414 Section 1
Project 1: Minithreads

Owen Arden
owen@cs.cornell.edu
All slides stolen.



What are minithreads?

 User-level thread package for Windows
NT/2000/XP
 Windows only comes with kernel-level

threads, but user-level threads are better in
some cases because of its low overhead

 Real motivation?
 We want you to learn how threading and

scheduling works



What do I have to do?

 Implement minithreads of course!
 Requires the following parts:

 FIFO Queue
 O(1) enqueue and dequeue

 Non-preemptive threads and FCFS scheduler
 Semaphore

 Threads not very useful if they can’t work together
 Simple application – “Food services” problem

 Optional:
 Add preemption, not covered today
 Optional material not graded



What do we give you?

 Interfaces for the queue, minithread, and
semaphore

 Machine specific parts
 i.e. context switching, stack initialization

 Simple test applications
 Not exhaustive tests!
 Write you own test programs to verify the

correctness of your code.



Minithreads structure

machineprimitives_x86.c

machineprimitives.h

machineprimitives.c

minithread.h

minithread.c

synch.h

synch.c

queue.h

queue.c

interrupts.h

interrupts.c



Queues

 Singly or doubly linked list are both fine and can satisfy the O(1)
requirements

 Queue must be able to hold arbitrary data
 Take any_t as queue_append and queue_prepend argument
 any_t really just a void*

 Note that queue_dequeue takes any_t* as its second argument
 Why? Remember that C is call by value

 If you want the any_t variable in your calling function to point to
where the item you just dequeued points to, you must pass the
address of your any_t pointer to the queue_dequeue function.

 Your queue_dequeue function must dereference the any_t*
argument before assigning it the value it just dequeued.

head

tail



Example of using queue_dequeue

 In the calling function:
any_t datum = NULL;
queue_dequeue(run_queue, &datum);
/* You should check the return value in your code */

 In queue_dequeue function:
int queue_dequeue(queue_t queue, any_t* item) {

…
*item = ((struct my_queue*)queue)->head->datum;
…

}



Minithread structure

 Need to create a Thread Control Block
(TCB) for each thread

 Things that must be in a TCB:
 Stack top pointer
 Stack base pointer

 i.e. where the stack start in memory
 Thread identifier
 Anything else you think might be useful



Minithread operations to implement

minithread_t minithread_fork(proc, arg)
create thread and make it runnable

minithread_t minithread_create(proc, arg)
create a thread but don’t make it runnable

void minithread_yield()
Let another thread in the run queue run
(make the scheduling decisions here)

void minithread_start(minithread_t t)
void minithread_stop()

start another thread, stop yourself



Minithread Creation

 Two methods to choose from
 minithread_create(proc, arg)
 minithread_fork(proc, arg)

 proc is a proc_t (a function pointer)
 typedef int (*proc_t)(arg_t)
 e.g.  int run_this_proc(int* x)

 arg_t is actually an int*, but you can
cast any pointer to it.



Minithread Creation

 For each thread, you must allocate a stack for
it and initialize the stack
 minithread_allocate_stack(stackbase,
stacktop)

 minithread_initialize_stack(stacktop,
body_proc, body_arg, final_proc,
final_arg)

 The implementation of allocate and initialize
stack are given to you.



Minithread Creation

root_proc addr

final_arg
final_proc addr

body_arg
body_proc addr

stack_top
stack_base

minithread_initialize_stack
initializes the stack with
root_proc (minithread_root),
which is a wrapper that calls
body_proc(body_arg), followed
by final_proc(final_arg).

Sets up your stack to look as
though a minithread_switch
has been called (which we’ll
see in a little bit).



Minithread Creation

 What’s final_proc for?
 Thread cleanup

 You will want to free up resources such as TCB and stack
allocation after your thread terminates (or else your
program will run out of memory like certain OS-es….)

 But can a thread cleanup after itself?
 No, not directly, not safe for a thread to free it’s own stack.

 Solution?
 Dedicated cleanup thread

 Should only run if there are threads to clean up though,
otherwise, otherwise it should be blocked.



Context switching

 Swap execution contexts with a thread from the run
queue (a queue that holds all your ready to run
processes)
 Registers
 Program counter
 Stack pointer

 minithread_switch(old_thread_sp_ptr,
new_thread_sp_ptr)is provided

 How does context switching work?



Before context switch starts

old_thread_sp_ptr new_thread_sp_ptr

ESP

?

new thread’s 
registers

old thread TCB new thread TCB



Push on old context

old_thread_sp_ptr new_thread_sp_ptr

ESP

?

old thread’s 
registers

new thread’s 
registers

old thread TCB new thread TCB



Change stack pointers

old_thread_sp_ptr new_thread_sp_ptr

ESP

old thread’s 
registers

new thread’s 
registers

old thread TCB new thread TCB



Pop off new context

old_thread_sp_ptr new_thread_sp_ptr

ESP

old thread’s 
registers

old thread TCB new thread TCB



Yielding a thread

 Because our threads are non-
preemptive, we need a user level way of
initiating a switch between threads
 Thus: minithread_yield

 Use minithread_switch to
implement minithread_yield

 Where does a yielding thread go?
 Into the run queue, so it can be re-

scheduled later



Initializing the system

 minithreads_system_initialize
(proc_t mainproc,arg_t mainarg)

 Starts up the system
 First user thread runs

mainproc(mainarg)

 Should probably create any additional threads
(idle, cleanup, etc.), queues, and any other
global structures at this point



What about the Windows thread?

 Windows gives me an initial (kernel) thread
and stack to work with, can I re-use that for
one of my threads?
 Yes, and you should as you don’t really want to

throw away memory for no reason.
 But be careful, make sure this thread never exits or

gets cleaned up.
 Remember, your threaded program never

really exits, as the idle thread will always keep
running.
 May want to re-use the initial Windows thread as

the idle thread because of this property.



Semaphores

 semaphore_t semaphore_create();
 Creates a semaphore (allocating resources for it)

 void semaphore_destroy(semaphore_t sem);
 destroys a semaphore (freeing resources for it)

 void semaphore_initialize(semaphore_t sem, int cnt);
 Initializes semaphore to an initial value
 i.e. Determines how many more semaphore_P functions can

be called than semaphore_V before a semaphore_P will block
 void semaphore_P(semaphore_t sem);

 Decrements on semaphore, must block if semaphore value
less than or equal to 0.

 void semaphore_V(semaphore_t sem);
 Increments on semaphore, must unblock a thread that’s

blocked on it.



Properties of Semaphores

 Value of semaphore manipulated atomically
through V and P

 Without preemption, trivial to implement
 i.e. Just don’t have a minithread_yield in

semaphore_P and semaphore_V
 With preemption, requires mutual exclusion

around instructions that change the variable
value
 i.e. test_and_set on a lock variable
 We’ll covered this in the next section



Properties of Semaphores

 Thread waiting to get a semaphore (i.e. after
calling a semaphore_P with the semaphore
value less than or equal to 0) must block on
the semaphore
 Each sempahore should therefore have a blocked

thread queue
 After calling a semaphore_V, a thread waiting

on that semaphore must unblock and be made
runnable.



Concluding remarks

 Watch out for memory leaks
 Write a clean and understandable code

 Variables should have proper names
 Provide meaningful but not excessive comments
 Don’t make us guess at what you wrote, the project

is simple enough that we should be able to
understand what you are doing at a glance

 Do not terminate when your user program threads
are done

 Remember that the idle thread should never terminate


