o
CS4411 Introduction to C

Owen Arden

owen@cs.cornell.edu
Upson 4126

Slide heritage: Alin Dobra - Niranjan Nagarajan - me

e C is a great language for systems code

Low level operations for direct access to
memory and control flow

High level abstractions for complex data
structures and portable code

Direct control of system resources

But great power can corrupt...

e A "nudge” in the right direction
Learn by doing!
e Show a few correct examples and

describe a few common mistakes

e Give you enough information so you can
compile-test-debug on your own

hello.c

/* Hello World program */
#1nclude <stdio.h>

1nt main(void){
printf("Hello World.\n");
return 0;

¥

Try it out

e Using your favorite editor, create hello.c

e From a VS2008 command prompt run:
cl hello.c

e Now run hello.exe

How to learn a new language

e Draw from experience
Many languages are similar
Learn a lot of languages!

e Anticipate generic language features
Control primitives (for, while, etc)
Data types (int, char, etc)

e Discover the strengths of the language
Don’t use a square peg for a round hole

Common Syntax with Java

e Operators:
Arithmetic:

o +-%/%

o ++ -- *=
Relational: <,>,<=>= ===
Logical: &&, ||, !, ?:

Bit: &,|,A!,<<,>>

Common Syntax with Java

e Control structures:
if(){ } else { }
while(){ }
do { } while()
for(i=0; i<100; i++){ }
switch() { case O: ... }
break, continue, return

Differences from Java

® No exceptions

You must explicitly check for errors and
propagate them

® No garbage collection

You must explicitly allocate and deallocate
memory

e Pointers!
Directly manipulate the contents of memory

Primitive Types

e Integer types:
char : characters or one byte
int, short and long : integers of different size
can be signed or unsigned

¢ Floating point types: float and double
e No boolean type

0 = false
#0 = true

Examples

e char c=‘A’;

e char ¢=100;

e int 1=-2343234;

e unsigned 1nt u1=100000000;
e float p1=3.14;

e double long_p1=0.31415e+1;

Printing output

printf(format,param1, ...)

format: string containing special markers where
parameter values will be substituted

%d for int
%c for char
%f for float
%s for string
e Example:
printf("Class %s: Size %d.\n", "CS4410", 999);

e Warning: mismatching markers and
parameters can crash your program!

Enumerated Types

enum months{ o Each element qget
JANUARY, ar? ci;nc?eemeenteg o
FEBRUARY, .
integer value,

}.MARCH beginning with 0.

enum months2{ o Explicitly assigning a
;C':%';Yﬂ’ value affects
. following elements

ST (AUGUST==8)

Memory Operations

e Pointers:
int a; /* An 1nt */
int * ptr_a; /* A pointer to an int */
e The value of a pointer is the memory
address it points to.
e Pointer operations:
‘&’ : obtain the address of a variable
*' . dereference a memory address

e void™ is a pointer to an unspecified type

Pointer example

int a;

int * ptr_a; /* ptr_a points to an
undefined location */

ptr_a = &a; /* ptr_a now points to
integer a */

ptr_a ; / variable pointed to
by ptr_a is now 3 */

Memory Management

¢ Global variables:
Declared outside all functions.
Space allocated statically before execution
Space deallocated at program exit

Be careful about names across files:
» Read up on static and extern variables

Memory Management

e Local variables:
Declared in the body of a function.

Space allocated on stack when entering the function (function
call).

Initialization before function starts executing.
Space automatically deallocated when function returns,
deleting the stack “frame”.
e Warning: referring to a local variable after the
function has returned can crash your program!

int * bad_func(){
int a = 37;
return &a;

Memory Management

e Heap variables:

Memory is explicitly allocated via malloc()
and deallocated via free()

void* malloc(int)

vold free(void*)

Memory management is up to the program
e Warning: Calling free on a pointer more
than once can crash your program!
Never calling free “leaks™ memory.

Malloc/Free Example

int* ptr; /* pointer to an int */
/* allocate space to hold an int */
ptr = (1nt*) malloc(sizeof(int));

/* check 1f successful */

1t (ptr == NULL) ex1t(1);

ntr = 4; / store value 4 */
printf(“ptr: %p %d\n”,ptr,*ptr);
free(ptr); /* deallocate memory */

Warning

e Dereferencing an un-initialized pointer
can crash your program (or worse)!

e Consider initializing a pointer to NULL
and checking before dereferencing.
e Some functions return NULL on error
Pay attention to the function specification!
Check return values!

Arrays and Strings

e Arrays:

/* declare and allocate space for array A */
int A[10];
for (int 1=0; 1<10; 1++)

A[1]=0;

e Strings: arrays of char terminated by \0
char[] name="(CS4410";
name[5]=°1";

e Functions to operate on strings in string.h
strcpy, strcmp, strcat, strstr, strchr.

Functions

e Arguments can be passed:

by value: a copy of the value of the
parameter passed to the function

by reference: a pointer to the parameter
variable is passed to the function

e Returned values from functions: by value
or by reference.

Pass by Value/Reference

/* pass by value */ cp .
void swap(int nl, int n2){ Modifying n1 and n2

int temp; only changes the
local variables.

/% pass by reference */ e To write g_fun_ction
void swap(int* pl, int* p2){ that modifies its

int temp;

temp = *pl: arguments, use
*pl = *pZ; references.
*p2 = temp;

h

Function Pointers

volid myproc(int d){
. /* do something */
Iy
volid mycaller(void (*f)(int), int param){
f(param); /* call function f with param */
Iy
volid main(void){
myproc(10); /* call myproc */
mycaller(myproc, 10); /* call using mycaller */
Iy

Structures

struct birthday {
char* name;
enum months month;
int day;
int year;
s
struct birthday mybirthday =
{"xyz",1,1,1990};
char initial = mybirthday.name[0];
mybirthday.month = FEBRUARY;

Structures

¢ Field types can be any type already
defined.

e Example :
struct list_elem{
1nt data;
struct list_elem* next;
s
struct list_elem le={ 10, NULL };
struct list_elem* ptr_le = ≤
printf("The data 1s %d\n", ptr_le->data);

e Creates an alias for a type
e Syntax: typedef type alias;
e Example:

typedef struct list_elem{
1nt data;
struct list_elem* next;
} list_elem;
list_elem le={ 10, NULL };

Preprocessor

e Headers

#1include <stdio.h>
#1include "myheader.h”

e Compile-time constants
#define MAX_LIST_LENGTH 100

e Conditional compilation
#1fdef DEBUG
printf("DEBUG: at line " __LINE__ "
#tendif

e Comment your code!
Especially when it’'s complex

e Don’t bury arcane magic numbers in the body
of your program

Create well-named constants

e Organize code logically
Pick a style and stick with it
Use descriptive function and variable names
Split large functions into manageable subroutines
Don’t introduce unnecessary dependencies

Build Tools and Version Control

e Build systems

Organize compilation commands and
dependencies

Enable incremental compiling
Examples: make, pmake, scons, etc

e Version Control
Keep track of changes

Simplifies project management among multiple
developers
Examples: Subversion, Git, CVS, Mercurial

Summary

e C is great!
e Learn by doing
e Respect the power of C
Initialize variables before use
Don'’t return pointers to local variables

Allocate and deallocate memory properly
Check return values

Don’t turn into this guy

