
CS4411 Introduction to C

Owen Arden
owen@cs.cornell.edu
Upson 4126
Slide heritage: Alin Dobra  Niranjan Nagarajan  me

Why C?

 C is a great language for systems code
 Low level operations for direct access to

memory and control flow
 High level abstractions for complex data

structures and portable code
 Direct control of system resources

But great power can corrupt…

Goals

 A “nudge” in the right direction
 Learn by doing!

 Show a few correct examples and
describe a few common mistakes

 Give you enough information so you can
compile-test-debug on your own

hello.c

/* Hello World program */
#include <stdio.h>

int main(void){
printf("Hello World.\n");
return 0;

}

Try it out

 Using your favorite editor, create hello.c
 From a VS2008 command prompt run:

 cl hello.c
 Now run hello.exe

How to learn a new language

 Draw from experience
 Many languages are similar
 Learn a lot of languages!

 Anticipate generic language features
 Control primitives (for, while, etc)
 Data types (int, char, etc)

 Discover the strengths of the language
 Don’t use a square peg for a round hole

Common Syntax with Java

 Operators:
 Arithmetic:

 +,-,*,/,%
 ++,--,*=,...

 Relational: <,>,<=,>=,==,!=
 Logical: &&, ||, !, ? :
 Bit: &,|,^,!,<<,>>

Common Syntax with Java

 Control structures:
 if(){ } else { }
 while(){ }
 do { } while()
 for(i=0; i<100; i++){ }
 switch() { case 0: ... }
 break, continue, return

Differences from Java

 No exceptions
 You must explicitly check for errors and

propagate them
 No garbage collection

 You must explicitly allocate and deallocate
memory

 Pointers!
 Directly manipulate the contents of memory

Primitive Types

 Integer types:
 char : characters or one byte
 int, short and long : integers of different size
 can be signed or unsigned

 Floating point types: float and double
 No boolean type

 0 ⇒ false
 ≠0 ⇒ true

Examples

 char c=‘A’;
 char c=100;
 int i=-2343234;
 unsigned int ui=100000000;
 float pi=3.14;
 double long_pi=0.31415e+1;

Printing output

printf(format,param1, ...)
 format: string containing special markers where

parameter values will be substituted
 %d for int
 %c for char
 %f for float
 %s for string

 Example:
 printf(”Class %s: Size %d.\n", "CS4410", 999);

 Warning: mismatching markers and
parameters can crash your program!

Enumerated Types

enum months{
JANUARY,
FEBRUARY,
MARCH

};

enum months2{
JANUARY=1,
JULY=7,
AUGUST

};

 Each element gets
an incremented
integer value,
beginning with 0.

 Explicitly assigning a
value affects
following elements
(AUGUST==8)

Memory Operations

 Pointers:
int a; /* An int */
int * ptr_a; /* A pointer to an int */

 The value of a pointer is the memory
address it points to.

 Pointer operations:
 ‘&’ : obtain the address of a variable
 ‘*’ : dereference a memory address

 void* is a pointer to an unspecified type

Pointer example

int a;
int * ptr_a; /* ptr_a points to an

 undefined location */
ptr_a = &a; /* ptr_a now points to

 integer a */
ptr_a = 3; / variable pointed to

 by ptr_a is now 3 */

Memory Management

 Global variables:
 Declared outside all functions.
 Space allocated statically before execution
 Space deallocated at program exit
 Be careful about names across files:

 Read up on static and extern variables

Memory Management

 Local variables:
 Declared in the body of a function.
 Space allocated on stack when entering the function (function

call).
 Initialization before function starts executing.
 Space automatically deallocated when function returns,

deleting the stack “frame”.
 Warning: referring to a local variable after the

function has returned can crash your program!
int * bad_func(){

int a = 37;
return &a;

}

Memory Management

 Heap variables:
 Memory is explicitly allocated via malloc()

and deallocated via free()
void* malloc(int)
void free(void*)

 Memory management is up to the program
 Warning: Calling free on a pointer more

than once can crash your program!
 Never calling free “leaks” memory.

Malloc/Free Example

int* ptr; /* pointer to an int */
/* allocate space to hold an int */
ptr = (int*) malloc(sizeof(int));

/* check if successful */
if (ptr == NULL) exit(1);
ptr = 4; / store value 4 */
printf(“ptr: %p %d\n”,ptr,*ptr);
free(ptr); /* deallocate memory */

Warning

 Dereferencing an un-initialized pointer
can crash your program (or worse)!

 Consider initializing a pointer to NULL
and checking before dereferencing.

 Some functions return NULL on error
 Pay attention to the function specification!
 Check return values!

Arrays and Strings

 Arrays:
/* declare and allocate space for array A */
int A[10];
for (int i=0; i<10; i++)

A[i]=0;

 Strings: arrays of char terminated by \0
char[] name="CS4410";
name[5]=‘1’;

 Functions to operate on strings in string.h
 strcpy, strcmp, strcat, strstr, strchr.

Functions

 Arguments can be passed:
 by value: a copy of the value of the

parameter passed to the function
 by reference: a pointer to the parameter

variable is passed to the function
 Returned values from functions: by value

or by reference.

Pass by Value/Reference

/* pass by value */
void swap(int n1, int n2){

int temp;
temp = n1;
n1 = n2;
n2 = temp;

}
/* pass by reference */
void swap(int* p1, int* p2){

int temp;
temp = *p1;
*p1 = *p2;
*p2 = temp;

}

 Modifying n1 and n2
only changes the
local variables.

 To write a function
that modifies its
arguments, use
references.

Function Pointers

void myproc(int d){
... /* do something */

}
void mycaller(void (*f)(int), int param){

f(param); /* call function f with param */
}
void main(void){

myproc(10); /* call myproc */
mycaller(myproc, 10); /* call using mycaller */

}

Structures

struct birthday {
char* name;
enum months month;
int day;
int year;

};
struct birthday mybirthday =
{"xyz",1,1,1990};

char initial = mybirthday.name[0];
mybirthday.month = FEBRUARY;

Structures

 Field types can be any type already
defined.

 Example :
struct list_elem{
int data;
struct list_elem* next;

};
struct list_elem le={ 10, NULL };
struct list_elem* ptr_le = ≤
printf("The data is %d\n", ptr_le->data);

Typedef

 Creates an alias for a type
 Syntax: typedef type alias;
 Example:
typedef struct list_elem{

int data;
struct list_elem* next;

} list_elem;
list_elem le={ 10, NULL };

Preprocessor

 Headers
#include <stdio.h>
#include "myheader.h”

 Compile-time constants
#define MAX_LIST_LENGTH 100

 Conditional compilation
#ifdef DEBUG
printf("DEBUG: at line " __LINE__ ".\n");
#endif

Style

 Comment your code!
 Especially when itʼs complex

 Donʼt bury arcane magic numbers in the body
of your program
 Create well-named constants

 Organize code logically
 Pick a style and stick with it
 Use descriptive function and variable names
 Split large functions into manageable subroutines
 Donʼt introduce unnecessary dependencies

Build Tools and Version Control

 Build systems
 Organize compilation commands and

dependencies
 Enable incremental compiling
 Examples: make, pmake, scons, etc

 Version Control
 Keep track of changes
 Simplifies project management among multiple

developers
 Examples: Subversion, Git, CVS, Mercurial

Summary

 C is great!
 Learn by doing
 Respect the power of C

 Initialize variables before use
 Don’t return pointers to local variables
 Allocate and deallocate memory properly
 Check return values

Don’t turn into this guy

