### Internet Structure & Protocols

Emin Gun Sirer

## Internetworking Origins

- Expensive supercomputers scattered throughout the US
- Researchers scattered differently throughout the US
- Need way to connect researchers to expensive machinery

Point-to-point connections might have sufficed

## Point to point connections



## Internetworking Origins

- Department of Defense initiated studies on how to build a resilient global network
  - How do you coordinate a nuclear attack?
  - Especially, how do you tell people to stop firing missiles during a nuclear war?
- Interoperability and dynamic routing are a must
  - Along with a lot of other properties
- Result: Internet
- A complex system with simple components

#### **Internet Overview**

- Every host is assigned, and identified by, an <u>IP</u> address
- Each packet contains a <u>header</u> that specifies the destination address
- The network <u>routes</u> the packets from the source to the destination
- Question: What kinds of properties should the network provide?

# Internet, The Big Picture



## The Big Picture



## End-to-End Example

- Should the network guarantee packet delivery?
  - Think about a file transfer program
  - Read file from disk, send it, the receiver reads packets and writes them to the disk
- If the network guaranteed packet delivery, one might think that the applications would be simpler
  - No need to worry about retransmits
  - But still need to check that the file was written to the remote disk intact
- A check is necessary if nodes can fail
  - Consequently, applications need to be written to perform their own retransmits
  - No need to burden the internals of the network with properties that can, and must, be implemented at the periphery

## End-to-End Argument

- An Occam's Razor for Internet architecture
- Application-specific properties are best provided by the applications, not the network
  - Guaranteed, or ordered, packet delivery, duplicate suppression, security, etc.
- The internet performs the simplest packet routing and delivery service it can
  - Packets are sent on a best-effort basis
  - Higher-level applications do the rest

## Naming

- Every host on the Internet is identified by an IP address
  - For now, 32-bit descriptor, like a phone number
  - Plans underway to change the underlying protocols to use longer addresses
- IP addresses are assigned to hosts by their internet service providers
  - Not physical addresses: IP address does not identify a single node, can swap machines and reuse the same IP address
  - Not entirely virtual: the IP address determines how packets get to you, and changes when you change your ISP
- Need completely virtual names
  - No one wants to remember a bunch of numbers

#### DNS

- Protocol for converting textual names to IP addresses
  - www.cnn.com = 207.25.71.25
- Namespace is hierarchical, i.e. a tree.
- Names are separated by dots into components
- Components are looked up from the right to the left

#### DNS Tree



- •All siblings must have unique names
- mil •Root is owned by ICANN
  - •Lookup occurs from the top down
  - •DNS stores arbitrary tuples (*resource records*)
  - •The address field contains the IP address, other fields contain mail routing info, owner info, etc.
  - •One field stores the cache timeout value

### DNS Lookup

- 1. the client asks its local nameserver
- 2. the local nameserver asks one of the *root* nameservers
- 3. the root nameserver replies with the address of the authoritative nameserver
- 4. the server then queries that nameserver
- 5. repeat until host is reached, cache result.

#### DNS Lessons

- Simple, hierarchical namespace works well
  - Can name anything, can share names
- Scales OK
  - Caching
  - Even though it was meant to be hierarchical, people like short names, and use it like a flat namespace
- Arbitrary tuple database
  - Can delegate selected services to other hosts
- No security!
- Namespace = money
  - Innovations in this space are met with resistance from people who control name resolution

#### IP

- Internetworking protocol
  - Network layer
- Common packet format for the Internet
  - Specifies what packets look like
  - Fragments long packets into shorter packets
  - Reassembles fragments into original shape
- Some parts are fundamental, and some are arbitrary
  - IPv4 is what most people use
  - IPv6 clears up some of the messy parts, but is not yet in wide use

## IPv4 packet layout

| Version IHL         | TOS      | Total Length    |                 |  |  |
|---------------------|----------|-----------------|-----------------|--|--|
| Identification      |          | Flags           | Fragment Offset |  |  |
| TTL                 | Protocol | Header Checksum |                 |  |  |
| Source Address      |          |                 |                 |  |  |
| Destination Address |          |                 |                 |  |  |
| Options             |          |                 |                 |  |  |
| Data                |          |                 |                 |  |  |

## IPv4 packet layout

| Version IHL         | TOS      | Total Length    |                 |  |  |
|---------------------|----------|-----------------|-----------------|--|--|
| Identification      |          | Flags           | Fragment Offset |  |  |
| TTL                 | Protocol | Header Checksum |                 |  |  |
| Source Address      |          |                 |                 |  |  |
| Destination Address |          |                 |                 |  |  |
| Options             |          |                 |                 |  |  |
| Data                |          |                 |                 |  |  |