
CS432 1

Spatial Data Management

[R&G] Chapter 28

CS432 2

Types of Spatial Data

Point Data
Points in a multidimensional space
E.g., Raster data such as satellite imagery, where each
pixel stores a measured value
E.g., Feature vectors extracted from text

Region Data
Objects have spatial extent with location and
boundary
DB typically uses geometric approximations
constructed using line segments, polygons, etc.,
called vector data.

CS432 3

Types of Spatial Queries

Spatial Range Queries
Find all cities within 50 miles of Ithaca
Query has associated region (location, boundary)
Answer includes ovelapping or contained data regions

Nearest-Neighbor Queries
Find the 10 cities nearest to Ithaca
Results must be ordered by proximity

Spatial Join Queries
Find all cities near a lake
Expensive, join condition involves regions and proximity

CS432 4

Applications of Spatial Data

Geographic Information Systems (GIS)
E.g., ESRI’s ArcInfo; OpenGIS Consortium
Geospatial information
All classes of spatial queries and data are common

Computer-Aided Design/Manufacturing
Store spatial objects such as surface of airplane fuselage
Range queries and spatial join queries are common

Multimedia Databases
Images, video, text, etc. stored and retrieved by content
First converted to feature vector form; high dimensionality
Nearest-neighbor queries are the most common

CS432 5

Single-Dimensional Indexes
B+ trees are fundamentally single-dimensional
indexes.
When we create a composite search key B+ tree,
e.g., an index on <age, sal>, we effectively linearize
the 2-dimensional space since we sort entries first
by age and then by sal.

Consider entries:
<11, 80>, <12, 10>
<12, 20>, <13, 75>

11 12 13

70
60
50
40
30
20
10

80

B+ tree
order

CS432 6

Multidimensional Indexes

A multidimensional index clusters entries so as to
exploit “nearness” in multidimensional space.
Keeping track of entries and maintaining a
balanced index structure presents a challenge!

Consider entries:
<11, 80>, <12, 10>
<12, 20>, <13, 75>

Spatial
clusters

70
60
50
40
30
20
10

80

B+ tree
order

11 12 13

CS432 7

Motivation for Multidimensional
Indexes
Spatial queries (GIS, CAD).

Find all hotels within a radius of 5 miles from the
conference venue.
Find the city with population 500,000 or more that is
nearest to Kalamazoo, MI.
Find all cities that lie on the Nile in Egypt.
Find all parts that touch the fuselage (in a plane design).

Similarity queries (content-based retrieval).
Given a face, find the five most similar faces.

Multidimensional range queries.
50 < age < 55 AND 80K < sal < 90K

CS432 8

What’s the difficulty?

An index based on spatial location needed.
One-dimensional indexes don’t support
multidimensional searching efficiently. (Why?)
Hash indexes only support point queries; want to
support range queries as well.
Must support inserts and deletes gracefully.

Ideally, want to support non-point data as
well (e.g., lines, shapes).
The R-tree meets these requirements, and
variants are widely used today.

CS432 9

The R-Tree

The R-tree is a tree-structured index that
remains balanced on inserts and deletes.
Each key stored in a leaf entry is intuitively a
box, or collection of intervals, with one
interval per dimension.
Example in 2-D:

X

Y

Root of
R Tree

Leaf
level

CS432 10

R-Tree Properties

Leaf entry = < n-dimensional box, rid >
This is Alternative (2), with key value being a box.
Box is the tightest bounding box for a data object.

Non-leaf entry = < n-dim box, ptr to child node >
Box covers all boxes in child node (in fact, subtree).

All leaves at same distance from root.
Nodes can be kept 50% full (except root).

Can choose a parameter m that is <= 50%, and ensure
that every node is at least m% full.

CS432 11

Example of an R-Tree

R8
R9

R10

R11

R12

R17
R18

R19

R13

R14

R15

R16

R1

R2

R3

R4

R5

R6

R7

Leaf entry

Index entry

Spatial object
approximated by
bounding box R8

CS432 12

Example R-Tree (Contd.)

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

CS432 13

Search for Objects Overlapping Box Q

Start at root.
1. If current node is non-leaf, for each

entry <E, ptr>, if box E overlaps Q,
search subtree identified by ptr.

2. If current node is leaf, for each entry
<E, rid>, if E overlaps Q, rid identifies
an object that might overlap Q.

Note: May have to search several subtrees at each node!
(In contrast, a B-tree equality search goes to just one leaf.)

CS432 14

Improving Search Using Constraints

It is convenient to store boxes in the R-tree as
approximations of arbitrary regions, because
boxes can be represented compactly.
But why not use convex polygons to
approximate query regions more accurately?

Will reduce overlap with nodes in tree, and reduce
the number of nodes fetched by avoiding some
branches altogether.
Cost of overlap test is higher than bounding box
intersection, but it is a main-memory cost, and can
actually be done quite efficiently. Generally a win.

CS432 15

Insert Entry <B, ptr>

Start at root and go down to “best-fit” leaf L.
Go to child whose box needs least enlargement to
cover B; resolve ties by going to smallest area child.

If best-fit leaf L has space, insert entry and
stop. Otherwise, split L into L1 and L2.

Adjust entry for L in its parent so that the box now
covers (only) L1.
Add an entry (in the parent node of L) for L2. (This
could cause the parent node to recursively split.)

CS432 16

Splitting a Node During Insertion

The entries in node L plus the newly inserted
entry must be distributed between L1 and L2.
Goal is to reduce likelihood of both L1 and L2
being searched on subsequent queries.
Idea: Redistribute so as to minimize area of L1
plus area of L2.

Exhaustive algorithm is too slow;
quadratic and linear heuristics are
described in the paper. GOOD SPLIT!

BAD!

CS432 17

R-Tree Variants
The R* tree uses the concept of forced reinserts to
reduce overlap in tree nodes. When a node overflows,
instead of splitting:

Remove some (say, 30% of the) entries and reinsert them into
the tree.
Could result in all reinserted entries fitting on some existing
pages, avoiding a split.

R* trees also use a different heuristic, minimizing box
perimeters rather than box areas during insertion.
Another variant, the R+ tree, avoids overlap by
inserting an object into multiple leaves if necessary.

Searches now take a single path to a leaf, at cost of redundancy.

CS432 18

GiST

The Generalized Search Tree (GiST) abstracts the
“tree” nature of a class of indexes including B+ trees
and R-tree variants.

Striking similarities in insert/delete/search and even
concurrency control algorithms make it possible to provide
“templates” for these algorithms that can be customized to
obtain the many different tree index structures.
B+ trees are so important (and simple enough to allow further
specialization) that they are implemented specially in all
DBMSs.
GiST provides an alternative for implementing other tree
indexes in an ORDBS.

CS432 19

Indexing High-Dimensional Data

Typically, high-dimensional datasets are collections of
points, not regions.

E.g., Feature vectors in multimedia applications.
Very sparse

Nearest neighbor queries are common.
R-tree becomes worse than sequential scan for most datasets
with more than a dozen dimensions.

As dimensionality increases contrast (ratio of distances
between nearest and farthest points) usually decreases;
“nearest neighbor” is not meaningful.

In any given data set, advisable to empirically test contrast.

CS432 20

Summary

Spatial data management has many
applications, including GIS, CAD/CAM,
multimedia indexing.

Point and region data
Overlap/containment and nearest-neighbor queries

Many approaches to indexing spatial data
R-tree approach is widely used in GIS systems
Other approaches include Grid Files, Quad trees,
and techniques based on “space-filling” curves.
For high-dimensional datasets, unless data has good
“contrast”, nearest-neighbor may not be well-
separated

CS432 21

Comments on R-Trees
Deletion consists of searching for the entry to
be deleted, removing it, and if the node
becomes under-full, deleting the node and
then re-inserting the remaining entries.
Overall, works quite well for 2 and 3 D
datasets. Several variants (notably, R+ and R*
trees) have been proposed; widely used.
Can improve search performance by using a
convex polygon to approximate query shape
(instead of a bounding box) and testing for
polygon-box intersection.

