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Data Warehousing and Decision 
Support

[R&G] Chapter 23, Part A
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Introduction

Increasingly, organizations are analyzing 
current and historical data to identify useful 
patterns and support business strategies.
Emphasis is on complex, interactive, 
exploratory analysis of very large datasets 
created by integrating data from across all 
parts of an enterprise; data is fairly static.

Contrast such On-Line Analytic Processing 
(OLAP) with traditional On-line Transaction 
Processing (OLTP): mostly long queries, instead 
of short update Xacts.
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Three Complementary Trends

Data Warehousing: Consolidate data from many 
sources in one large repository.

Loading, periodic synchronization of replicas.
Semantic integration.

OLAP:
Complex SQL queries and views. 
Queries based on spreadsheet-style operations and 
“multidimensional” view of data.
Interactive and “online” queries.

Data Mining:  Exploratory search for interesting 
trends and anomalies.
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Data Warehousing

Integrated data spanning 
long time periods, often 
augmented with summary 
information. 
Several gigabytes to 
terabytes common.
Interactive response      
times expected for     
complex queries; ad-hoc 
updates uncommon.
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Warehousing Issues
Semantic Integration: When getting data from 
multiple sources, must eliminate mismatches, 
e.g., different currencies, schemas.
Heterogeneous Sources: Must access data from 
a variety of source formats and repositories.

Replication capabilities can be exploited here.
Load, Refresh, Purge: Must load data, 
periodically refresh it, and purge too-old data.
Metadata Management: Must keep track of 
source, loading time, and other information for 
all data in the warehouse.
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Multidimensional 
Data Model

Collection of numeric measures,
which depend on a set of dimensions.

E.g., measure Sales, dimensions     
Product (key: pid), Location (locid),      
and Time (timeid).
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MOLAP vs ROLAP

Multidimensional data can be stored physically 
in a (disk-resident, persistent) array; called 
MOLAP systems.  Alternatively, can store as a 
relation; called ROLAP systems.
The main relation, which relates dimensions to 
a measure, is called the fact table.  Each 
dimension can have additional attributes and 
an associated dimension table.

E.g., Products(pid, pname, category, price)
Fact tables are much larger than dimensional tables.
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Dimension Hierarchies

For each dimension, the set of values can be 
organized in a hierarchy:

PRODUCT TIME LOCATION

category           week          month                  state

pname date                                city

year

quarter                          country
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OLAP Queries

Influenced by SQL and by spreadsheets.
A common operation is to aggregate a 
measure over one or more dimensions.

Find total sales.
Find total sales for each city, or for each state.
Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of  a 
dimension hierarchy.  

E.g., Given total sales by city, we can roll-up to get 
sales by state.
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OLAP Queries
Drill-down: The inverse of roll-up.  

E.g., Given total sales by state, can drill-down to get 
total sales by city.
E.g., Can also drill-down on different dimension to 
get total sales by product for each state.

Pivoting: Aggregation on selected dimensions.
E.g., Pivoting on Location and Time                    
yields this cross-tabulation: 63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total

Slicing and Dicing: Equality
and range selections on one
or more dimensions.
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Comparison with SQL Queries
The cross-tabulation obtained by pivoting can also 
be computed using a collection of  SQLqueries:
SELECT SUM(S.sales)
FROM  Sales S, Times T, Locations L
WHERE  S.timeid=T.timeid AND S.timeid=L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM  Sales S, Times T
WHERE  S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM  Sales S, Location L
WHERE  S.timeid=L.timeid
GROUP BY L.state
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The CUBE Operator

Generalizing the previous example, if there 
are k dimensions, we have 2^k possible SQL 
GROUP BY queries that can be generated 
through pivoting on a subset of dimensions.
CUBE pid, locid, timeid BY SUM Sales

Equivalent to rolling up Sales on all eight subsets 
of the set {pid, locid, timeid}; each roll-up 
corresponds to an SQL query of the form:

SELECT SUM(S.sales)
FROM  Sales S
GROUP BY grouping-list

Lots of work on optimizing 
the CUBE operator!
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Design Issues

Fact table in BCNF; dimension tables un-normalized.
Dimension tables are small; updates/inserts/deletes are 
rare. So, anomalies less important than query performance.

This kind of schema is very common in OLAP 
applications, and is called a star schema; computing 
the join of all these relations is called a star join.  

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS
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Implementation Issues
New indexing techniques:  Bitmap indexes, Join 
indexes, array representations, compression, 
precomputation of aggregations, etc.
E.g., Bitmap index:

10
10
01
10

112 Joe M 3
115 Ram M 5
119 Sue F 5
112 Woo M 4

00100
00001
00001
00010

sex       custid name sex rating      ratingBit-vector:
1 bit for each
possible value.
Many queries can
be answered using
bit-vector ops!

M
F
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Join Indexes
Consider the join of Sales, Products, Times, and 
Locations, possibly with additional selection 
conditions (e.g., country=“USA”).

A join index can be constructed to speed up such joins. 
The index contains [s,p,t,l] if there are tuples (with sid) s
in Sales, p in Products, t in Times and l in Locations that 
satisfy the join (and selection) conditions.

Problem: Number of join indexes can grow rapidly.
A variation addresses this problem: For each column with 
an additional selection (e.g., country), build an index with 
[c,s] in it if a dimension table tuple with value c in the 
selection column joins with a Sales tuple with sid s; if 
indexes are bitmaps, called bitmapped join index.
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Bitmapped Join Index

Consider a query with conditions price=10 and 
country=“USA”.  Suppose tuple (with sid) s in Sales 
joins with a tuple p with price=10 and a tuple l with 
country =“USA”.  There are two join indexes; one 
containing [10,s] and the other [USA,s].
Intersecting these indexes tells us which tuples in 
Sales are in the join and satisfy the given selection.

pricecategorypnamepid countrystatecitylocid
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(Fact table)SALES

TIMES

PRODUCTS LOCATIONS
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Querying Sequences in SQL:1999
Trend analysis is difficult to do in SQL-92:

Find the % change in monthly sales
Find the top 5 product by total sales
Find the trailing n-day moving average of sales
The first two queries can be expressed with 
difficulty, but the third cannot even be expressed 
in SQL-92 if n is a parameter of the query.

The WINDOW clause in SQL:1999 allows us to 
write such queries over a table viewed as a 
sequence (implicitly, based on user-specified 
sort keys)
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The WINDOW Clause

Let the result of the FROM and WHERE clauses be “Temp”.
(Conceptually) Temp is partitioned according to the PARTITION BY clause.  

Similar to GROUP BY, but the answer has one row for each row in a partition, not 
one row per partition!

Each partition is sorted according to the ORDER BY clause.
For each row in a partition, the WINDOW clause creates a “window” of 
nearby (preceding or succeeding) tuples.

Can be value-based, as in example, using RANGE
Can be based on number of rows to include in the window, using ROWS clause

The aggregate function is evaluated for each row in the partition using the 
corresponding window.

New aggregate functions that are useful with windowing include RANK (position 
of a row within its partition) and its variants DENSE_RANK, PERCENT_RANK, 
CUME_DIST.

SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg
FROM  Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state

ORDER BY T.month
RANGE BETWEEN INTERVAL `1’ MONTH PRECEDING
AND INTERVAL `1’ MONTH FOLLOWING)
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Top N Queries

If you want to find the 10 (or so) cheapest 
cars, it would be nice if the DB could avoid 
computing the costs of all cars before sorting 
to determine the 10 cheapest.

Idea: Guess at a cost c such that the 10 cheapest all 
cost less than c, and that not too many more cost 
less.  Then add the selection cost<c and evaluate 
the query.

• If the guess is right, great, we avoid 
computation for cars that cost more than c.

• If the guess is wrong, need to reset the selection 
and recompute the original query.
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Top N Queries
SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

OPTIMIZE FOR construct is not in SQL:1999!
Cut-off value c is chosen by optimizer.

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 

AND S.sales > c
ORDER BY S.sales DESC
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Online Aggregation
Consider an aggregate query, e.g., finding the 
average sales by state. Can we provide the user 
with some information before the exact average is 
computed for all states?

Can show the current “running average” for each state 
as the computation proceeds.
Even better, if we use statistical techniques and sample 
tuples to aggregate instead of simply scanning the 
aggregated table, we can provide bounds such as “the 
average for Wisconsin is 2000±102 with 95% 
probability.

• Should also use nonblocking algorithms!



8

CS 432 22

Summary
Decision support is an emerging, rapidly 
growing subarea of databases.
Involves the creation of large, consolidated 
data repositories called data warehouses.
Warehouses exploited using sophisticated 
analysis techniques:  complex SQL queries 
and OLAP “multidimensional” queries 
(influenced by both SQL and spreadsheets).
New techniques for database design, 
indexing, view maintenance, and interactive 
querying need to be supported.


