
1

CS 432 1

Data Warehousing and Decision
Support

[R&G] Chapter 23, Part A

CS 432 2

Introduction

Increasingly, organizations are analyzing
current and historical data to identify useful
patterns and support business strategies.
Emphasis is on complex, interactive,
exploratory analysis of very large datasets
created by integrating data from across all
parts of an enterprise; data is fairly static.

Contrast such On-Line Analytic Processing
(OLAP) with traditional On-line Transaction
Processing (OLTP): mostly long queries, instead
of short update Xacts.

CS 432 3

Three Complementary Trends

Data Warehousing: Consolidate data from many
sources in one large repository.

Loading, periodic synchronization of replicas.
Semantic integration.

OLAP:
Complex SQL queries and views.
Queries based on spreadsheet-style operations and
“multidimensional” view of data.
Interactive and “online” queries.

Data Mining: Exploratory search for interesting
trends and anomalies.

2

CS 432 4

Data Warehousing

Integrated data spanning
long time periods, often
augmented with summary
information.
Several gigabytes to
terabytes common.
Interactive response
times expected for
complex queries; ad-hoc
updates uncommon.

EXTERNAL DATA
SOURCES

EXTRACT
TRANSFORM

LOAD
REFRESH

DATA
WAREHOUSEMetadata

Repository

SUPPORTS

OLAPDATA
MINING

CS 432 5

Warehousing Issues
Semantic Integration: When getting data from
multiple sources, must eliminate mismatches,
e.g., different currencies, schemas.
Heterogeneous Sources: Must access data from
a variety of source formats and repositories.

Replication capabilities can be exploited here.
Load, Refresh, Purge: Must load data,
periodically refresh it, and purge too-old data.
Metadata Management: Must keep track of
source, loading time, and other information for
all data in the warehouse.

CS 432 6

Multidimensional
Data Model

Collection of numeric measures,
which depend on a set of dimensions.

E.g., measure Sales, dimensions
Product (key: pid), Location (locid),
and Time (timeid).

8 10 10

30 20 50

25 8 15

1 2 3
timeid

pi
d

11

 1
2

13

11 1 1 25
11 2 1 8
11 3 1 15
12 1 1 30
12 2 1 20
12 3 1 50
13 1 1 8
13 2 1 10
13 3 1 10
11 1 2 35

pi
d

tim
ei

d
lo

ci
d

sa
le

s

locid

Slice locid=1
is shown:

3

CS 432 7

MOLAP vs ROLAP

Multidimensional data can be stored physically
in a (disk-resident, persistent) array; called
MOLAP systems. Alternatively, can store as a
relation; called ROLAP systems.
The main relation, which relates dimensions to
a measure, is called the fact table. Each
dimension can have additional attributes and
an associated dimension table.

E.g., Products(pid, pname, category, price)
Fact tables are much larger than dimensional tables.

CS 432 8

Dimension Hierarchies

For each dimension, the set of values can be
organized in a hierarchy:

PRODUCT TIME LOCATION

category week month state

pname date city

year

quarter country

CS 432 9

OLAP Queries

Influenced by SQL and by spreadsheets.
A common operation is to aggregate a
measure over one or more dimensions.

Find total sales.
Find total sales for each city, or for each state.
Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of a
dimension hierarchy.

E.g., Given total sales by city, we can roll-up to get
sales by state.

4

CS 432 10

OLAP Queries
Drill-down: The inverse of roll-up.

E.g., Given total sales by state, can drill-down to get
total sales by city.
E.g., Can also drill-down on different dimension to
get total sales by product for each state.

Pivoting: Aggregation on selected dimensions.
E.g., Pivoting on Location and Time
yields this cross-tabulation: 63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

Slicing and Dicing: Equality
and range selections on one
or more dimensions.

CS 432 11

Comparison with SQL Queries
The cross-tabulation obtained by pivoting can also
be computed using a collection of SQLqueries:
SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.timeid=L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.timeid=L.timeid
GROUP BY L.state

CS 432 12

The CUBE Operator

Generalizing the previous example, if there
are k dimensions, we have 2^k possible SQL
GROUP BY queries that can be generated
through pivoting on a subset of dimensions.
CUBE pid, locid, timeid BY SUM Sales

Equivalent to rolling up Sales on all eight subsets
of the set {pid, locid, timeid}; each roll-up
corresponds to an SQL query of the form:

SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list

Lots of work on optimizing
the CUBE operator!

5

CS 432 13

Design Issues

Fact table in BCNF; dimension tables un-normalized.
Dimension tables are small; updates/inserts/deletes are
rare. So, anomalies less important than query performance.

This kind of schema is very common in OLAP
applications, and is called a star schema; computing
the join of all these relations is called a star join.

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

CS 432 14

Implementation Issues
New indexing techniques: Bitmap indexes, Join
indexes, array representations, compression,
precomputation of aggregations, etc.
E.g., Bitmap index:

10
10
01
10

112 Joe M 3
115 Ram M 5
119 Sue F 5
112 Woo M 4

00100
00001
00001
00010

sex custid name sex rating ratingBit-vector:
1 bit for each
possible value.
Many queries can
be answered using
bit-vector ops!

M
F

CS 432 15

Join Indexes
Consider the join of Sales, Products, Times, and
Locations, possibly with additional selection
conditions (e.g., country=“USA”).

A join index can be constructed to speed up such joins.
The index contains [s,p,t,l] if there are tuples (with sid) s
in Sales, p in Products, t in Times and l in Locations that
satisfy the join (and selection) conditions.

Problem: Number of join indexes can grow rapidly.
A variation addresses this problem: For each column with
an additional selection (e.g., country), build an index with
[c,s] in it if a dimension table tuple with value c in the
selection column joins with a Sales tuple with sid s; if
indexes are bitmaps, called bitmapped join index.

6

CS 432 16

Bitmapped Join Index

Consider a query with conditions price=10 and
country=“USA”. Suppose tuple (with sid) s in Sales
joins with a tuple p with price=10 and a tuple l with
country =“USA”. There are two join indexes; one
containing [10,s] and the other [USA,s].
Intersecting these indexes tells us which tuples in
Sales are in the join and satisfy the given selection.

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_fla
g

weekdat
e

timei
d

mont
h

quarte
r

year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

CS 432 17

Querying Sequences in SQL:1999
Trend analysis is difficult to do in SQL-92:

Find the % change in monthly sales
Find the top 5 product by total sales
Find the trailing n-day moving average of sales
The first two queries can be expressed with
difficulty, but the third cannot even be expressed
in SQL-92 if n is a parameter of the query.

The WINDOW clause in SQL:1999 allows us to
write such queries over a table viewed as a
sequence (implicitly, based on user-specified
sort keys)

CS 432 18

The WINDOW Clause

Let the result of the FROM and WHERE clauses be “Temp”.
(Conceptually) Temp is partitioned according to the PARTITION BY clause.

Similar to GROUP BY, but the answer has one row for each row in a partition, not
one row per partition!

Each partition is sorted according to the ORDER BY clause.
For each row in a partition, the WINDOW clause creates a “window” of
nearby (preceding or succeeding) tuples.

Can be value-based, as in example, using RANGE
Can be based on number of rows to include in the window, using ROWS clause

The aggregate function is evaluated for each row in the partition using the
corresponding window.

New aggregate functions that are useful with windowing include RANK (position
of a row within its partition) and its variants DENSE_RANK, PERCENT_RANK,
CUME_DIST.

SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state

ORDER BY T.month
RANGE BETWEEN INTERVAL `1’ MONTH PRECEDING
AND INTERVAL `1’ MONTH FOLLOWING)

7

CS 432 19

Top N Queries

If you want to find the 10 (or so) cheapest
cars, it would be nice if the DB could avoid
computing the costs of all cars before sorting
to determine the 10 cheapest.

Idea: Guess at a cost c such that the 10 cheapest all
cost less than c, and that not too many more cost
less. Then add the selection cost<c and evaluate
the query.

• If the guess is right, great, we avoid
computation for cars that cost more than c.

• If the guess is wrong, need to reset the selection
and recompute the original query.

CS 432 20

Top N Queries
SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

OPTIMIZE FOR construct is not in SQL:1999!
Cut-off value c is chosen by optimizer.

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3

AND S.sales > c
ORDER BY S.sales DESC

CS 432 21

Online Aggregation
Consider an aggregate query, e.g., finding the
average sales by state. Can we provide the user
with some information before the exact average is
computed for all states?

Can show the current “running average” for each state
as the computation proceeds.
Even better, if we use statistical techniques and sample
tuples to aggregate instead of simply scanning the
aggregated table, we can provide bounds such as “the
average for Wisconsin is 2000±102 with 95%
probability.

• Should also use nonblocking algorithms!

8

CS 432 22

Summary
Decision support is an emerging, rapidly
growing subarea of databases.
Involves the creation of large, consolidated
data repositories called data warehouses.
Warehouses exploited using sophisticated
analysis techniques: complex SQL queries
and OLAP “multidimensional” queries
(influenced by both SQL and spreadsheets).
New techniques for database design,
indexing, view maintenance, and interactive
querying need to be supported.

