Relational Algebra

Chapter 4, Part A

CS432 Fall 2007

Relational Query Languages

* Query languages: Allow manipulation and retrieval of data from a database.
* Relational model supports simple, powerful QLs: \qquad
- Strong formal foundation based on logic.
- Allows for much optimization. \qquad
* Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.
\qquad

Formal Relational Query Languages

* Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- Relational Algebra: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe what they want, rather than how to compute it. (Nonoperational, declarative.)

Preliminaries

* A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run regardless of instance!)
- The schema for the result of a given query is also fixed! Determined by definition of query language constructs.
* Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL

Relational Algebra

* Basic operations:
- Selection $(\boldsymbol{\sigma})$ Selects a subset of rows from relation.
- Projection $(\boldsymbol{\pi})$ Deletes unwanted columns from relation.
- Cross-product (X) Allows us to combine two relations.
- Set-difference (一) Tuples in reln. 1, but not in reln. 2.
- Union (U) Tuples in reln. 1 and in reln. 2.
* Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
* Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

* Deletes attributes that are not in projection list.
* Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
* Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

Selection

* Selects rows that satisfy selection condition.
* No duplicates in result! (Why?)
* Schema of result identical to schema of (only) input relation.
* Result relation can be the input for another relational algebra operation! (Operator composition.)
CS432 Fall 2007

sname rating yuppy 9 lubber 8 guppy rusty
5
$\pi_{\text {sname,rating }}(S 2)$

age
35.0
55.5

$\pi_{a g e}(S 2)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

sid	sname	rat	age
28	yuppy	9	35.0
58	rusty	10	35.0
$\sigma_{\text {rating }>8}(S 2)$			
	sname	rating	
	yuppy	$\begin{array}{\|l\|} \hline 9 \\ 10 \\ \hline \end{array}$	
	rusty		
$\pi_{\text {sname,rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)$			

Union, Intersection, Set-Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0
$S 1 \cup S 2$			
sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0
$S 1 \cap S 2$			

\qquad
*. All of these operations take two input relations, which must be union-compatible:

- Same number of fields.
- `Corresponding' fields have the same type.
* What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0

$S 1-S 2$
CS432 Fall 2007

Cross-Product

* Each row of S1 is paired with each row of R1.
* Result schema has one field per field of S1 and R1, with field names `inherited’ if possible.
- Conflict: Both S1 and R1 have a field called sid. \qquad
(sid) sname rating age (sid) bid day

22	dustin	7	45.0	22	101	$10 / 10 / 96$

22	dustin	7	45.0	58	103	$11 / 12 / 96$

31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubbe	8	55.5	58	103	$11 / 12 / 96$

31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$

| 58 | rusty | 10 | 35.0 | 58 | 103 | $11 / 12 / 96$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Renaming operator: $\quad \rho(C(1 \rightarrow$ sid $1,5 \rightarrow$ sid 2$), S 1 \times R 1)$ CS432 Fall 2007

Joins

\star Condition Join: $R \bowtie_{c} S=\sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
$S 1 \bowtie_{S 1 . s i d<R 1 . s i d} R 1$						

* Result schema same as that of cross-product.
* Fewer tuples than cross-product, might be able to compute more efficiently
* Sometimes called a theta-join.

Joins

\qquad

* Equi-Ioin: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day	
22	dustin	7	45.0	101	$10 / 10 / 96$	
rusty	10	35.0	103	$11 / 12 / 96$		
58	$S 1 \bowtie_{\text {sid }} R 1$					

* Result schema similar to cross-product, but only one copy of fields for which equality is specified.
* Natural Join: Equijoin on all common fields.

Division

* Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.
$*$ Let A have 2 fields, x and $y ; B$ have only field y :

- $A / B=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- i.e., A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
$*$ In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A. CS432 Fall 2007

Examples of Division A / B

Expressing A/B Using Basic Operators

* Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
* Idea: For A / B, compute all x values that are not `disqualified' by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \quad \pi_{x}(A)-$ all disqualified tuples

Find names of sailors who've reserved boat \#103

* Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid }=103}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
*Solution 2: $\quad \rho\left(\right.$ Temp1, $\sigma_{b i d=103}$ Reserves $)$
$\rho($ Temp 2, Temp $1 \bowtie$ Sailors $)$
$\pi_{\text {sname }}{ }^{(\text {Temp } 2)}$
\because Solution 3: $\quad \pi_{\text {sname }}\left(\sigma_{b i d=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$
CS432 Fall 2007

Find names of sailors who've reserved a red boat
\qquad
\qquad

* Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }}=\right.\right.$ 'red $^{\prime}$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }=\text { ' red }}{ }^{\prime}\right.\right.\right.$ Boats $\left.) \bowtie \operatorname{Res}\right) \bowtie$ Sailors $)$

A query optimizer can find this, given the first solution!
CS432 Fall 2007

Find sailors who've reserved a red or a green boat

* Can identify all red or green boats, then find \qquad sailors who've reserved one of these boats:

$$
\rho\left(\text { Tempboats, }\left(\sigma_{\text {color }=\text { ' red }} \text { ' } \vee \text { color }=\text { ' green' }{ }^{\prime} \text { Boats }\right)\right)
$$

$\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie \operatorname{Re} \text { serves } \bowtie \text { Sailors })}$

* Can also define Tempboats using union! (How?)
$*$ What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

* Previous approach won't work! Must identify sailors who' ve reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
ρ (Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ red $^{\prime}{ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
ρ (Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ green' ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

CS432 Fall 2007

Find the names of sailors who've reserved all boats

* Uses division; schemas of the input relations
to / must be carefully chosen:
ρ (Tempsids, $\left(\pi_{\text {sid,bid }}\right.$ Reserves) $/\left(\pi_{\text {bid }}\right.$ Boats $\left.)\right)$
$\pi_{\text {sname }}{ }^{(\text {Tempsids }} \bowtie$ Sailors)
* To find sailors who've reserved all 'Interlake' boats:

$$
/ \pi_{\text {bid }}\left(\sigma_{\text {bname }}{ }^{\prime} \text { 'Interlake' }{ }^{\prime} \text { Boats }\right)
$$

CS432 Fall 2007

Summary

* The relational model has rigorously defined query languages that are simple and powerful.
* Relational algebra is more operational; useful as internal representation for query evaluation plans.
* Several ways of expressing a given query; a query optimizer should choose the most efficient version.

