Information Retrieval

INFO 4300 / CS 4300

- Retrieval models
 - Older models
 - » Boolean retrieval
 - » Vector Space model _x
 - Probabilistic Models

Tuesday

- » BM25
- » Language models
- Combining evidence
 - » Inference networks
 - » Learning to Rank

Information Retrieval

INFO 4300 / CS 4300

- Retrieval models
 - Older models

» Boolean retrieval ← Today

» Vector Space model "

more on evaluation

- Probabilistic Models
 - » BM25
 - » Language models
- Combining evidence
 - » Inference networks
 - » Learning to Rank

Retrieval Model Overview

- Older models
 - Boolean retrieval
 - Vector Space model
- Probabilistic Models
 - BM25
 - Language models
- Combining evidence
 - Inference networks
 - Learning to Rank

Boolean Retrieval

- Two possible outcomes for query processing
 - TRUE and FALSE
 - "exact-match" retrieval
 - simplest form of ranking
- Query usually specified using Boolean operators
 - AND, OR, NOT
 - proximity operators also used

Boolean Retrieval

- Advantages
 - Results are predictable, relatively easy to explain
 - Many different features can be incorporated
 - Efficient processing since many documents can be eliminated from search
- Disadvantages
 - Effectiveness depends entirely on user
 - Simple queries usually don't work well
 - Complex queries are difficult

Example: searching "by numbers"

- Sequence of queries driven by number of retrieved documents
 - e.g. "lincoln" search of news articles
 - president AND lincoln
 - president AND lincoln AND NOT (automobile OR car)
 - president AND lincoln AND biography AND life AND birthplace AND gettysburg AND NOT (automobile OR car)
 - president AND lincoln AND (biography OR life OR birthplace OR gettysburg) AND NOT (automobile OR car)

Vector Space Model

- Documents ranked by distance between points representing query and documents
 - Similarity measure more common than a distance or dissimilarity measure
 - e.g. Cosine correlation

$$Cosine(D_i, Q) = \frac{\sum\limits_{j=1}^t d_{ij} \cdot q_j}{\sqrt{\sum\limits_{j=1}^t d_{ij}^2 \cdot \sum\limits_{j=1}^t q_j^2}}$$

Similarity Calculation

- Consider two documents D_{1} , D_{2} and a query Q

»
$$D_1$$
 = (0.5, 0.8, 0.3), D_2 = (0.9, 0.4, 0.2), Q = (1.5, 1.0, $Cosine(D_1, Q)$ = $\frac{(0.5 \times 1.5) + (0.8 \times 1.0)}{\sqrt{(0.5^2 + 0.8^2 + 0.3^2)(1.5^2 + 1.0^2)}}$ = $\frac{1.55}{\sqrt{(0.98 \times 3.25)}} = 0.87$

$$Cosine(D_2, Q) = \frac{(0.9 \times 1.5) + (0.4 \times 1.0)}{\sqrt{(0.9^2 + 0.4^2 + 0.2^2)(1.5^2 + 1.0^2)}}$$
$$= \frac{1.75}{\sqrt{(1.01 \times 3.25)}} = 0.97$$

Term Weights

- tf.idf weight
 - Term frequency weight measures importance in document: $tf_{ik} = \frac{f_{ik}}{\sum\limits_{i}^{t} f_{ij}}$
 - Inverse document frequency measures importance in collection: $idf_k = \log \frac{N}{n_k}$
 - Some heuristic modifications

$$d_{ik} = \frac{(\log(f_{ik}) + 1) \cdot \log(N/n_k)}{\sqrt{\sum_{k=1}^{t} [(\log(f_{ik}) + 1.0) \cdot \log(N/n_k)]^2}}$$

Information Retrieval

INFO 4300 / CS 4300

- Retrieval models
 - Older models
 - » Boolean retrieval ← Today
 - » Vector Space model + more on evaluation
 - Probabilistic Models
 - » BM25

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

- » Inference networks
- » Learning to Rank

IR as Classification

Bayes Classifier

- Bayes Decision Rule
 - A document D is relevant if P(R|D) > P(NR|D)
- Estimating probabilities
 - use Bayes Rule

$$P(R|D) = \frac{P(D|R)P(R)}{P(D)}$$

- classify a document as relevant if

$$\frac{P(D|R)}{P(D|NR)} > \frac{P(NR)}{P(R)}$$

» Ihs is likelihood ratio

Estimating P(D|R)

Assume term independence

$$P(D|R) = \prod_{i=1}^{t} P(d_i|R)$$

- Binary independence model
 - document represented by a vector of t binary features indicating term occurrence (or nonoccurrence)
 - $-p_i$ is probability that term i occurs (i.e., has value 1) in relevant document, s_i is probability of occurrence in non-relevant document

Binary Independence Model

$$\frac{P(D|R)}{P(D|NR)} = \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$$

$$= \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \left(\prod_{i:d_i=1} \frac{1-s_i}{1-p_i} \cdot \prod_{i:d_i=1} \frac{1-p_i}{1-s_i} \right) \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$$

$$= \prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$$

Binary Independence Model

Scoring function is

$$\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$$

- Query provides information about relevant documents.
- If we assume p_i constant, s_i approximated by entire collection, get idf-like weight

$$\log \frac{0.5(1 - \frac{n_i}{N})}{\frac{n_i}{N}(1 - 0.5)} = \log \frac{N - n_i}{n_i}$$

Contingency Table

	Relevant	Non-relevant	Total
$d_i = 1$	r_i	$n_i - r_i$	n_i
$d_i = 0$	$R-r_i$	$N-n_i-R+r_i$	N - n_i
Total	R	N-R	\overline{N} .

$$p_i = (r_i + 0.5)/(R+1)$$

$$s_i = (n_i - r_i + 0.5)/(N - R + 1)$$

Gives scoring function:

$$\sum_{i:d_i=q_i=1} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

BM25

- Popular and effective ranking algorithm based on binary independence model
 - adds document and query term weights

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

- $-k_1$, k_2 and K are parameters whose values are set empirically
- $-K = k_1((1-b) + b \cdot \frac{dl}{avdl})$ dl is doc length
- Typical TREC value for k_1 is 1.2, k_2 varies from 0 to 1000, b = 0.75

BM25 Example

- Query with two terms, "president lincoln", (qf = 1)
- No relevance information (r and R are zero)
- N = 500,000 documents
- "president" occurs in 40,000 documents (n_1 = 40,000)
- "lincoln" occurs in 300 documents (n_2 = 300)
- "president" occurs 15 times in doc (f_1 = 15)
- "lincoln" occurs 25 times (f₂ = 25)
- document length is 90% of the average length (dl/avdl = .9)
- k_1 = 1.2, b = 0.75, and k_2 = 100
- $K = 1.2 \cdot (0.25 + 0.75 \cdot 0.9) = 1.11$

- r_i is the # of relevant documents containing term i
- (set to 0 if no relevancy info is known)
- n_i is the # of docs containing term i
- N is the total # of docs in the collection
- R is the number of relevant documents for this query
- (set to 0 if no relevancy info is known)
- f_i is the frequency of term i in the doc under consideration
- qf_i is the frequency of term i in the query
- k₁ determines how the tf component of the term weight changes as f_i increases. (if 0, then tf component is ignored.) Typical value for TREC is 1.2; so f_i is very non-linear (similar to the use of *log f* in term wts of the vector space model) --- after 3 or 4 occurrences of a term, additional occurrences will have little impact.
- k₂ has a similar role for the query term weights. Typical values (see slide) make the equation less sensitive to k₂ than k₁ because query term frequencies are much lower and less variable than doc term frequencies.
- K is more complicated. Its role is basically to normalize the tf component by document length.
- b regulates the impact of length normalization. (0 means none; 1 is full normalization.)

BM25 Example

$$BM25(Q,D) = \frac{(0+0.5)/(0-0+0.5)}{(40000-0+0.5)/(500000-40000-0+0+0.5)}$$

$$\times \frac{(1.2+1)15}{1.11+15} \times \frac{(100+1)1}{100+1}$$

$$+ \log \frac{(0+0.5)/(0-0+0.5)}{(300-0+0.5)/(500000-300-0+0+0.5)}$$

$$\times \frac{(1.2+1)25}{1.11+25} \times \frac{(100+1)1}{100+1}$$

$$= \log 460000.5/40000.5 \cdot 33/16.11 \cdot 101/101$$

$$+ \log 499700.5/300.5 \cdot 55/26.11 \cdot 101/101$$

$$= 2.44 \cdot 2.05 \cdot 1 + 7.42 \cdot 2.11 \cdot 1$$

$$= 5.00 + 15.66 = 20.66$$

BM25 Example

Effect of term frequencies

Frequency of	Frequency of	BM25
"president"	"lincoln"	score
15	25	20.66
15	1	12.74
15	0	5.00
1	25	18.2
0	25	15.66