
Information Retrieval
INFO 4300 / CS 4300

!  Retrieval models

– Older models
» Boolean retrieval
» Vector Space model

– Probabilistic Models
» BM25
» Language models

– Combining evidence
» Inference networks
» Learning to Rank

Tuesday

Information Retrieval
INFO 4300 / CS 4300

!  Retrieval models

– Older models
» Boolean retrieval
» Vector Space model

– Probabilistic Models
» BM25
» Language models

– Combining evidence
» Inference networks
» Learning to Rank

Today
 + more on evaluation

Retrieval Model Overview

!  Older models
– Boolean retrieval
– Vector Space model

!  Probabilistic Models
– BM25
– Language models

!  Combining evidence
–  Inference networks
– Learning to Rank

Boolean Retrieval

!  Two possible outcomes for query
processing
– TRUE and FALSE
–  “exact-match” retrieval
– simplest form of ranking

!  Query usually specified using Boolean
operators
– AND, OR, NOT
– proximity operators also used

Boolean Retrieval
!  Advantages

– Results are predictable, relatively easy to explain
– Many different features can be incorporated
– Efficient processing since many documents can be

eliminated from search
!  Disadvantages

– Effectiveness depends entirely on user
– Simple queries usually don’t work well
– Complex queries are difficult

Example: searching “by numbers”
!  Sequence of queries driven by number of

retrieved documents
–  e.g. “lincoln” search of news articles
–  president AND lincoln
–  president AND lincoln AND NOT (automobile OR

car)
–  president AND lincoln AND biography AND life

AND birthplace AND gettysburg AND NOT
(automobile OR car)

–  president AND lincoln AND (biography OR life OR
birthplace OR gettysburg) AND NOT (automobile
OR car)

Vector Space Model

!  Documents ranked by distance between
points representing query and documents
– Similarity measure more common than a

distance or dissimilarity measure
– e.g. Cosine correlation

Similarity Calculation

– Consider two documents D1, D2 and a
query Q

» D1 = (0.5, 0.8, 0.3), D2 = (0.9, 0.4, 0.2), Q = (1.5, 1.0,
0)

Term Weights

!  tf.idf weight
– Term frequency weight measures importance

in document:

–  Inverse document frequency measures
importance in collection:

– Some heuristic modifications

Information Retrieval
INFO 4300 / CS 4300

!  Retrieval models

– Older models
» Boolean retrieval
» Vector Space model

– Probabilistic Models
» BM25
» Language models

– Combining evidence
» Inference networks
» Learning to Rank

Today
 + more on evaluation

IR as Classification Bayes Classifier

!  Bayes Decision Rule
– A document D is relevant if P(R|D) > P(NR|D)

!  Estimating probabilities
– use Bayes Rule

– classify a document as relevant if

» lhs is likelihood ratio

Estimating P(D|R)

!  Assume term independence

!  Binary independence model
– document represented by a vector of t binary

features indicating term occurrence (or non-
occurrence)

– pi is probability that term i occurs (i.e., has
value 1) in relevant document, si is probability
of occurrence in non-relevant document

Binary Independence Model

Binary Independence Model

!  Scoring function is

!  Query provides information about relevant
documents.

!  If we assume pi constant, si approximated by
entire collection, get idf-like weight

Contingency Table

Gives scoring function:

ni

BM25

!  Popular and effective ranking algorithm
based on binary independence model
– adds document and query term weights

– k1, k2 and K are parameters whose values are
set empirically

–  dl is doc length
– Typical TREC value for k1 is 1.2, k2 varies from

0 to 1000, b = 0.75

!  ri is the # of relevant documents containing term i
!  (set to 0 if no relevancy info is known)
!  ni is the # of docs containing term i
!  N is the total # of docs in the collection
!  R is the number of relevant documents for this query
!  (set to 0 if no relevancy info is known)
!  fi is the frequency of term i in the doc under consideration
!  qfi is the frequency of term i in the query
!  k1 determines how the tf component of the term weight changes as fi

increases. (if 0, then tf component is ignored.) Typical value for TREC is
1.2; so fi is very non-linear (similar to the use of log f in term wts of the vector
space model) --- after 3 or 4 occurrences of a term, additional occurrences
will have little impact.

!  k2 has a similar role for the query term weights. Typical values (see slide)
make the equation less sensitive to k2 than k1 because query term
frequencies are much lower and less variable than doc term frequencies.

!  K is more complicated. Its role is basically to normalize the tf component by
document length.

!  b regulates the impact of length normalization. (0 means none; 1 is full
normalization.)

BM25 Example
!  Query with two terms, “president lincoln”, (qf = 1)
!  No relevance information (r and R are zero)
!  N = 500,000 documents
!  “president” occurs in 40,000 documents (n1 = 40,000)
!  “lincoln” occurs in 300 documents (n2 = 300)
!  “president” occurs 15 times in doc (f1 = 15)
!  “lincoln” occurs 25 times (f2 = 25)
!  document length is 90% of the average length (dl/avdl

= .9)
!  k1 = 1.2, b = 0.75, and k2 = 100
!  K = 1.2 ! (0.25 + 0.75 ! 0.9) = 1.11

BM25 Example

BM25 Example

!  Effect of term frequencies

