Information Retrieval

INFO 4300 / CS 4300

- Retrieval models
 - Older models
 - » Boolean retrieval
 - » Vector Space model ,
 - Probabilistic Models

Today

- » BM25
- » Language models
- Combining evidence
 - » Inference networks
 - » Learning to Rank

Retrieval Models

- Provide a mathematical framework for defining the search process
 - includes explanation of assumptions
 - basis of many ranking algorithms
 - can be implicit
- Progress in retrieval models has corresponded with improvements in effectiveness
- Theories about relevance

Relevance

- Complex concept that has been studied for some time
 - Many factors to consider
 - People often disagree when making relevance judgments
- Retrieval models make various assumptions about relevance to simplify problem
 - e.g., topical vs. user relevance
 - e.g., binary vs. multi-valued relevance

Retrieval Model Overview

- Older models
 - Boolean retrieval
 - Vector Space model
- Probabilistic Models
 - BM25
 - Language models
- Combining evidence
 - Inference networks
 - Learning to Rank

Vector Space Model

- Documents and query represented by a vector of term weights
- Collection represented by a matrix of term weights

$$D_{i} = (d_{i1}, d_{i2}, \dots, d_{it}) Q = (q_{1}, q_{2}, \dots, q_{t})$$

$$Term_{1} Term_{2} \dots Term_{t}$$

$$Doc_{1} d_{11} d_{12} \dots d_{1t}$$

$$Doc_{2} d_{21} d_{22} \dots d_{2t}$$

$$\vdots \vdots$$

$$Doc_{n} d_{n1} d_{n2} \dots d_{nt}$$

Vector Space Model

- D₁ Tropical Freshwater Aquarium Fish.
- D₂ Tropical Fish, Aquarium Care, Tank Setup.
- D₃ Keeping Tropical Fish and Goldfish in Aquariums, and Fish Bowls.
- D₄ The Tropical Tank Homepage Tropical Fish and Aquariums.

Terms	Documents			
	D_1	D_2	D_3	D_4
aquarium	1	1	1	1
bowl	0	0	1	0
care	0	1	0	0
fish	1	1	2	1
freshwater	1	0	0	0
goldfish	0	0	1	0
homepage	0	0	0	1
keep	0	0	1	0
setup	0	1	0	0
tank	0	1	0	1
tropical	1	1	1	2

Vector Space Model

 3-d pictures useful, but can be misleading for high-dimensional space

Vector Space Model

- Documents ranked by distance between points representing query and documents
 - Similarity measure more common than a distance or dissimilarity measure
 - e.g. Cosine correlation

$$Cosine(D_i, Q) = \frac{\sum_{j=1}^{t} d_{ij} \cdot q_j}{\sqrt{\sum_{j=1}^{t} d_{ij}^2 \cdot \sum_{j=1}^{t} q_j^2}}$$

Similarity Calculation

- Consider two documents D_{1} , D_{2} and a query Q

»
$$D_1$$
 = (0.5, 0.8, 0.3), D_2 = (0.9, 0.4, 0.2), Q = (1.5, 1.0, $Cosine(D_1, Q) = \frac{(0.5 \times 1.5) + (0.8 \times 1.0)}{\sqrt{(0.5^2 + 0.8^2 + 0.3^2)(1.5^2 + 1.0^2)}}$
= $\frac{1.55}{\sqrt{(0.98 \times 3.25)}} = 0.87$

$$Cosine(D_2, Q) = \frac{(0.9 \times 1.5) + (0.4 \times 1.0)}{\sqrt{(0.9^2 + 0.4^2 + 0.2^2)(1.5^2 + 1.0^2)}}$$
$$= \frac{1.75}{\sqrt{(1.01 \times 3.25)}} = 0.97$$

Term Weights

- tf.idf weight
 - Term frequency weight measures importance in document: $tf_{ik} = \frac{f_{ik}}{\sum\limits_{i}^{} f_{ij}}$
 - Inverse document frequency measures importance in collection: $idf_k = \log \frac{N}{n_k}$
 - Some heuristic modifications

$$d_{ik} = \frac{(\log(f_{ik}) + 1) \cdot \log(N/n_k)}{\sqrt{\sum_{k=1}^{t} [(\log(f_{ik}) + 1.0) \cdot \log(N/n_k)]^2}}$$

Vector Space Model

- Advantages
 - Simple computational framework for ranking
 - Any similarity measure or term weighting scheme could be used
- Disadvantages
 - Assumption of term independence
 - No predictions about techniques for effective ranking

Probability Ranking Principle

- Robertson (1977)
 - "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
 - where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
 - the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data."

IR as Classification

Bayes Classifier

- Bayes Decision Rule
 - A document *D* is relevant if P(R|D) > P(NR|D)
- Estimating probabilities
 - use Bayes Rule

$$P(R|D) = \frac{P(D|R)P(R)}{P(D)}$$

- classify a document as relevant if

$$\frac{P(D|R)}{P(D|NR)} > \frac{P(NR)}{P(R)}$$

» Ihs is likelihood ratio

Estimating P(D|R)

Assume term independence

$$P(D|R) = \prod_{i=1}^{t} P(d_i|R)$$

- Binary independence model
 - document represented by a vector of t binary features indicating term occurrence (or nonoccurrence)

BM25

- Popular and effective ranking algorithm based on binary independence model
 - adds document and query term weights

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

- $-k_1$, k_2 and K are parameters whose values are set empirically
- $-K = k_1((1-b) + b \cdot \frac{dl}{avdl})$ dl is doc length
- Typical TREC value for k_1 is 1.2, k_2 varies from 0 to 1000, b = 0.75

- r_i is the # of relevant documents containing term i
- (set to 0 if no relevancy info is known)
- n_i is the # of docs containing term i
- N is the total # of docs in the collection
- R is the number of relevant documents for this query
- (set to 0 if no relevancy info is known)
- f_i is the frequency of term i in the doc under consideration
- qf_i is the frequency of term i in the query
- k₁ determines how the tf component of the term weight changes as f_i increases. (if 0, then tf component is ignored.) Typical value for TREC is 1.2; so f_i is very non-linear (similar to the use of *log f* in term wts of the vector space model) --- after 3 or 4 occurrences of a term, additional occurrences will have little impact.
- k₂ has a similar role for the query term weights. Typical values (see slide) make the equation less sensitive to k₂ than k₁ because query term frequencies are much lower and less variable than doc term frequencies.
- K is more complicated. Its role is basically to normalize the tf component by document length.
- b regulates the impact of length normalization. (0 means none; 1 is full normalization.)

BM25 Example

- Query with two terms, "president lincoln", (qf = 1)
- No relevance information (r and R are zero)
- *N* = 500,000 documents
- "president" occurs in 40,000 documents (n_1 = 40,000)
- "lincoln" occurs in 300 documents (n_2 = 300)
- "president" occurs 15 times in doc $(f_1 = 15)$
- "lincoln" occurs 25 times $(f_2 = 25)$
- document length is 90% of the average length (dl/avdl = .9)
- $k_1 = 1.2$, b = 0.75, and $k_2 = 100$
- $K = 1.2 \cdot (0.25 + 0.75 \cdot 0.9) = 1.11$

BM25 Example

$$BM25(Q, D) = \frac{(0+0.5)/(0-0+0.5)}{(40000-0+0.5)/(500000-40000-0+0+0.5)}$$

$$\times \frac{(1.2+1)15}{1.11+15} \times \frac{(100+1)1}{100+1}$$

$$+\log \frac{(0+0.5)/(0-0+0.5)}{(300-0+0.5)/(500000-300-0+0+0.5)}$$

$$\times \frac{(1.2+1)25}{1.11+25} \times \frac{(100+1)1}{100+1}$$

$$= \log 460000.5/40000.5 \cdot 33/16.11 \cdot 101/101$$

$$+\log 499700.5/300.5 \cdot 55/26.11 \cdot 101/101$$

$$= 2.44 \cdot 2.05 \cdot 1 + 7.42 \cdot 2.11 \cdot 1$$

$$= 5.00 + 15.66 = 20.66$$

BM25 Example

Effect of term frequencies

Frequency of	Frequency of	BM25
"president"	"lincoln"	score
15	25	20.66
15	1	12.74
15	0	5.00
1	25	18.2
0	25	15.66