
Information Retrieval
INFO 4300 / CS 4300

!  Retrieval models

– Older models
» Boolean retrieval
» Vector Space model

– Probabilistic Models
» BM25
» Language models

– Web search
» Learning to Rank

Search Taxonomy

!  Informational
–  finding information about some topic which

may be on one or more web pages
– Topical search

!  Navigational
–  finding a particular web page that the user has

either seen before or is assumed to exist
!  Transactional

–  finding a site where a task such as shopping
or downloading music can be performed

[Broder, 2002]

Web Search
!  For effective navigational and transactional

search, need to combine features that reflect
user relevance

!  Commercial web search engines combine
evidence from hundreds of features to
generate a ranking score for a web page
–  page content, page metadata, anchor text, links

(e.g., PageRank), and user behavior (click logs)
–  page metadata – e.g., “age”, how often it is

updated, the URL of the page, the domain name
of its site, and the amount of text content

Search Engine Optimization

!  SEO: understanding the relative importance of
features used in search and how they can be
manipulated to obtain better search rankings for
a web page
–  E.g., improve the text used in the title tag, improve the

text in heading tags, make sure that the domain name
and URL contain important keywords, and try to
improve the anchor text and link structure

–  Some of these techniques are regarded as not
appropriate by search engine companies

Web Search
!  In TREC evaluations, the most effective features

for navigational search are:
–  Text in the title, body, and heading (h1, h2, h3, and

h4) parts of the document, the anchor text of all links
pointing to the document, the PageRank number, and
the inlink count

!  Given size of Web, many pages will contain all
query terms
–  Ranking algorithm focuses on discriminating between

these pages
–  Word proximity is important, e.g. n-gram models

Machine Learning and IR

!  Considerable interaction between these fields
– Rocchio algorithm (60s) is a simple learning

approach
–  80s, 90s: learning ranking algorithms based on

user feedback
–  2000s: text categorization

!  Limited by amount of training data
!  Web query logs have generated new wave of

research
–  e.g., “Learning to Rank”

Information Retrieval
INFO 4300 / CS 4300

!  Retrieval models

– Older models
» Boolean retrieval
» Vector Space model

– Probabilistic Models
» BM25
» Language models

– Web search
» Learning to Rank

Generative vs. Discriminative

!  All of the probabilistic retrieval models presented
so far fall into the category of generative models
–  A generative model assumes that documents were

generated from some underlying model (in this case,
usually a multinomial distribution) and uses training
data to estimate the parameters of the model

–  Probability of belonging to a class (i.e. the relevant
documents for a query) is then estimated using
Bayes’ Rule and the document model

Generative vs. Discriminative

!  A discriminative model estimates the
probability of belonging to a class directly from
the observed features of the document based on
the training data

!  Generative models perform well with low
numbers of training examples

!  Discriminative models usually have the
advantage given enough training data
–  Can also easily incorporate many features

Discriminative Models for IR

!  Discriminative models can be trained
using explicit relevance judgments or click
data in query logs
– Click data is much cheaper, more noisy
– e.g. Ranking Support Vector Machine (SVM)

takes as input partial rank information for
queries

» partial information about which documents should
be ranked higher than others

Ranking SVM

!  Training data is

–  r is partial rank information

Example

Ranking SVM

!  Training data is

–  r is partial rank information
» if document da should be ranked higher than db,

then (da, db) ∈ ri

– partial rank information comes from relevance
judgments (allows multiple levels of
relevance) or click data

» e.g., d1, d2 and d3 are the documents in the first,
second and third rank of the search output, only d3
clicked on ! (d3, d1) and (d3, d2) will be in desired
ranking for this query

Ranking SVM
!  Learning a linear ranking function

– where w is a weight vector that is adjusted by
learning

–  da is the vector representation of the features of
document

–  non-linear functions also possible
!  Weights represent importance of features

–  learned using training data
–  e.g.,

Ranking SVM

!  Learn w that satisfies as many of the
following conditions as possible:

!  Can be formulated as an optimization
problem

Ranking SVM

– !, known as a slack variable, allows for
misclassification of difficult or noisy training
examples, and C is a parameter that is used
to prevent overfitting

Ranking SVM

!  Software available to do optimization
!  Each pair of documents in our training data

can be represented by the vector:

!  Score for this pair is:

!  SVM classifier will find a w that makes the
smallest score as large as possible
– make the differences in scores as large as

possible for the pairs of documents that are
hardest to rank

Support Vector Machines

!  Based on geometric principles
!  Given a set of inputs labeled ‘+’ and ‘-’, find

the “best” hyperplane that separates the
‘+’s and ‘-’s

!  Questions
– How is “best” defined?
– What if no hyperplane exists such that the ‘+’s

and ‘-’s can be perfectly separated?

+

+
+

+
++

+

+

+

–

–

–

–

–

–

–

–

–

+
–

+

+

+

+
+

+ +

+

+

–

–

–
–

–

–

–

–

–

+
–

Separable vs. Non-Separable Data

Separable Non-Separable

“Best” Hyperplane?

!  First, what is a hyperplane?
– A generalization of a line to higher dimensions
– Defined by a vector w

!  With SVMs, the best hyperplane is the one
with the maximum margin

!  If x+ and x- are the closest ‘+’ and ‘-’ inputs
to the hyperplane, then the margin is:

+

+

+

+

+
+

+

+

–

–

–

–

–

–

–

–

–

+

–

+

! "# $ %

! "# $ %!
"#
$
%

!
"#
$
%

!
"#
$
% &

Support Vector Machines

w . x

w . x

Linear Separable Case

!  In math:

!  In English:
– Find the largest margin hyperplane that

separates the ‘+’s and ‘-’s

Linearly Non-Separable Case
!  In math:

!  In English:
–  !i denotes how misclassified instance i is
– Find a hyperplane that has a large margin and

lowest misclassification cost

–

+

+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

–
–

–

–
–

–

–
–

–

–

–
–

–

–

–

–

–

–

–

–

–

–

–
–

–

–

– –

–

–

–

–

+

–

Nearest Neighbor Classification

The Kernel Trick
!  Linearly non-separable data may become

linearly separable if transformed, or mapped,
to a higher dimension space

!  Computing vector math (i.e., dot products) in
very high dimensional space is costly

!  The kernel trick allows very high dimensional
dot products to be computed efficiently

!  Allows inputs to be implicitly mapped to high
(possibly infinite) dimensional space with little
computational overhead

Non-Binary Classification with SVMs
!  One versus all

– Train “class c vs. not class c” SVM for every class
–  If there are K classes, must train K classifiers
– Classify items according to:

!  One versus one

– Train a binary classifier for every pair of classes
– Must train K(K-1)/2 classifiers
– Computationally expensive for large values of K

SVM Tools

!  Solving SVM optimization problem is not
straightforward

!  Many good software packages exist
– SVM-Light
– LIBSVM
– R library
– Matlab SVM Toolbox

