Information Retrieval
INFO 4300/ CS 4300

= Indexing
— Inverted indexes
— Compression
mm) — Index construction
— Ranking model

Index Construction

= Simple in-memory indexer

procedure BUILDINDEX(D) > D is a set of text documents

I — HashTable() > Inverted list storage
n—0 > Document numbering
for all documents d € D do

n«—n+1

T « Parse(d) > Parse document into tokens

Remove duplicates from T
for all tokens t € T' do
if t ¢ I then
Iy — Array()
end if
I¢.append(n)
end for
end for
return /
end procedure

Merging

= Merging addresses limited memory problem
— Build the inverted list structure until memory runs out

— Then write the partial index to disk, start making a
new one

— At the end of this process, the disk is filled with many
partial indexes, which are merged
= Partial lists must be designed so they can be
merged in small pieces
— e.g., storing in alphabetical order

Merging

Index A | aardvark |2 | 3 | 4 | 5 | apple |2 | 4 |

Index B | aardvark I 6 | 9 I actor | 15 I 42 |68 |

Index A | aardvark | 2 | 3 | 4 | 5 |
Index B |6|9| act<>r|15|42|()8|

Combined index | aardvark | 2 |3 | 4 | 5 | 6 I 9 | actor | 15 | 42 |68 | apple | 2 |4 |

Distributed Indexing

= Distributed processing driven by need to
index and analyze huge amounts of data
(i.e., the Web)

= Large numbers of inexpensive servers used
rather than larger, more expensive
machines

= MapReduce is a distributed programming
tool designed for indexing and analysis
tasks

Example

= Given a large text file that contains data
about credit card transactions

— Each line of the file contains a credit card
number and an amount of money

— Determine the number of unique credit card
numbers

= Could use hash table — memory problems
— counting is simple with sorted file

= Similar with distributed approach
— sorting and placement are crucial

MapReduce

= Distributed programming framework that
focuses on data placement and distribution
= Mapper

— Generally, transforms a list of items into another
list of items of the same length

= Reducer
— Transforms a list of items into a single item

— Definitions not so strict in terms of number of
outputs

= Many mapper and reducer tasks on a cluster
of machines

MapReduce

= Basic process
— Map stage which transforms data records into
pairs, each with a key and a value
— Shuffle uses a hash function so that all pairs with
the same key end up next to each other and on
the same machine

— Reduce stage processes records in batches,
where all pairs with the same key are processed
at the same time

= Idempotence of Mapper and Reducer
provides fault tolerance

— multiple operations on same input gives same
output

MapReduce

Example

Map

Input

Reduce

procedure MAPCREDITCARDS(input)
while not input.done() do
record < input.next()
card « record.card
amount « record.amount
Emit(card, amount)
end while
end procedure

procedure REDUCECREDITCARDS(key, values)
total <+ 0
card « key
while not values.done() do
amount « values.next()
total « total + amount
end while
Emit(card, total)
end procedure

Indexing Example

Result Merging

procedure MAPDOCUMENTSTOPOSTINGS(input)
while not input.done() do
document « input.next()
number « document.number
position « 0
tokens « Parse(document)
for each word w in tokens do

Emit(number :position)
position = position + 1
end for
end while

end procedure

procedure REDUCEPOSTINGSTOLISTS(key, values)
word «— key
WriteWord (word)
while not input.done() do
EncodePosting(values.next())
end while
end procedure

* Index merging is a good strategy for handling
updates when they come in large batches

* For small updates this is very inefficient

— instead, create separate index for new
documents, merge results from both searches

— could be in-memory, fast to update and search
= Deletions handled using delete list

— Modifications done by putting old version on
delete list, adding new version to new documents

index

Query Processing

= Document-at-a-time

— Calculates complete scores for documents by
processing all term lists, one document at a time

= Term-at-a-time

— Accumulates scores for documents by processing

term lists one at a time

= Both approaches have optimization
techniques that significantly reduce time
required to generate scores

Document-At-A-Time

tropical | 1:2 I | 2:2 | | 3:1 I

score | 1:4 | | 2:3 | | 3:1 | | 4:2 |

Document-At-A-Time

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L « Array()
R « PriorityQueue(k)
for all terms w; in @ do
l; « InvertedList(w;, I)
L.add(l;)
end for
for all documents d € I do
for all inverted lists [; in L do
if I; points to d then
sp < sp + gi(Q) fi(l) > Update the document score
l;.movePastDocument(d)
end if
end for
R.add(sp,D)
end for
return the top k results from R
end procedure

Term-At-A-Time

partial scores

old partial scores
new partial scores

old partial scores | 1:2 || 2:1 | | 4:2 |

tropical

final scores | 1:4 || 2:3 || 2:2 || 4:2 |

Term-At-A-Time

procedure TERMATATIMERETRIEVAL(Q, I, f, g k)

A «— HashTable()
L «— Array()
R « PriorityQueue(k)
for all terms w; in @ do
l; «— InvertedList(w;, I)
L.add(l;)
end for
for all lists I; € L do
while /; is not finished do
d — l;.getCurrentDocument()
Ag— Aa+g:(Q)f(li)
1;.moveToNextDocument()
end while
end for
for all accumulators A4 in A do
sp — Aqg > Accumulator contains the document score
R.add(sp,D)
end for
return the top k results from R

end procedure

Optimization Techniques

= Term-at-a-time uses more memory for
accumulators, but accesses disk more
efficiently

= Two classes of optimization

— Read less data from inverted lists
» e.g., skip lists
» better for simple feature functions
— Calculate scores for fewer documents

» e.g., conjunctive processing
» better for complex feature functions

1:
2
3:
1
5:

19:

26:
27:
28:
29:
30:
31:

procedure TERMATATIMERETRIEVAL(Q, I, f, g, k)
A « HashTable()
L « Array()
R «— PriorityQueue(k)
for all terms w; in Q do

1; < InvertedList(w;, I) ConjunCti¥e_
{oedtt) Term-at-a-Time

end for
for all lists [; € L do
while /; is not finished do
if i = 0 then
d — l;.getCurrent Document()
Aq — A+ 9i(Q) f(Li)
else
d « l;.getCurrentDocument()
d «— A.getNextDocumentAfter(d)
1;.skipForwardTo(d)
if /;.getCurrentDocument() = d then
Ag— A+ 9:(Q)f(li)
else
A.remove(d)
end if
end if
end while
end for
for all accumulators Ay in A do
sp — Ag > Accumulator contains the document score
R.add(sp. D)
end for
return the top & results from R
end procedure

1:
2
3:
— 4
5
6
T
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L «— Array()
R — PriorityQueue(k)
for all terms w; in @ do
l; < InvertedList(w;, I)

Conjunetive

Loadd(1;) Document-at-a-Time

end for
while all lists in L are not finished do
for all inverted lists /; in L do
if /;.getCurrentDocument() > d then
d «— l;.getCurrentDocument()
end if
end for
for all inverted lists {; in L do [;.skipForwardToDocument(d)
if [; points to d then
sa < sa+gi(Q) fi(l;)
l;.movePastDocument(d)
else
break
end if
end for
R.add(s4,d)
end while
return the top k results from R
end procedure

> Update the document score

Threshold Methods

= Threshold methods use number of top-
ranked documents needed (k) to optimize
query processing
— for most applications, k is small

= For any query, there is a minimum score that
each document needs to reach before it can
be shown to the user
— score of the kth-highest scoring document
— gives threshold 1

— optimization methods estimate 7'to ignore
documents

Threshold Methods

* For document-at-a-time processing, use
score of lowest-ranked document so far for
.

— for term-at-a-time, have to use ks«-largest score
in the accumulator table

= MaxScore method compares the maximum
score that remaining documents could have
tor

— safe optimization in that ranking will be the
same without optimization

MaxScore Example

eucalypmSI:Dj |:| I:' |:|:| |:|
wee [[T PP T PTTPTTPTPPTITTIPTET]

= Indexer computes ;.

— maximum score for any document containing just
“tree”

Assume k =3, 1'is lowest score after first three
docs
Likely that 7' > ;.

— 1 'is the score of a document that contains both query
terms

Can safely skip over all gray postings

Other Approaches

= Early termination of query processing
— ignore high-frequency word lists in term-at-a-time
— ignore documents at end of lists in doc-at-a-time
— unsafe optimization

= List ordering

— order inverted lists by quality metric (e.g.,
PageRank) or by partial score

— makes unsafe (and fast) optimizations more likely
to produce good documents

Structured Queries

= Query language can support specification
of complex features
— similar to SQL for database systems

— query translator converts the user’s input into
the structured query representation

— Galago query language is the example used
here

—e.g., Galago query:
#combine(#od:1(tropical fish) #od:1(aquarium fish) fish)

Evaluation Tree for Structured Query

#Hcombine feature combinations

N

#Hod:1 #Hod:1 proximity expressions

VA

tropical aquarium fish list data

Distributed Evaluation

= Basic process
— All queries sent to a director machine

— Director then sends messages to many index
servers

— Each index server does some portion of the query
processing

— Director organizes the results and returns them to
the user
= Two main approaches

— Document distribution
» by far the most popular

— Term distribution

Distributed Evaluation

= Document distribution

— each index server acts as a search engine for
a small fraction of the total collection

— director sends a copy of the query to each of
the index servers, each of which returns the
top-k results

— results are merged into a single ranked list by
the director
= Collection statistics should be shared for
effective ranking

Distributed Evaluation

= Term distribution
— Single index is built for the whole cluster of
machines
— Each inverted list in that index is then assigned to
one index server

» in most cases the data to process a query is not stored
on a single machine

— One of the index servers is chosen to process the

query
» usually the one holding the longest inverted list

— Other index servers send information to that
server

— Final results sent to director

Caching

Query distributions similar to Zipf
— About 72 each day are unique, but some are very
popular

Caching can significantly improve

effectiveness

— Cache popular query results

— Cache common inverted lists

Inverted list caching can help with unique

queries

((j)atche must be refreshed to prevent stale
ata

