
Information Retrieval
INFO 4300 / CS 4300

!  Indexing
–  Inverted indexes
– Compression
–  Index construction
– Ranking model

Index Construction

!  Simple in-memory indexer

t!

t!

t!

Merging

!  Merging addresses limited memory problem
–  Build the inverted list structure until memory runs out
–  Then write the partial index to disk, start making a

new one
–  At the end of this process, the disk is filled with many

partial indexes, which are merged
!  Partial lists must be designed so they can be

merged in small pieces
–  e.g., storing in alphabetical order

Merging

Distributed Indexing

!  Distributed processing driven by need to
index and analyze huge amounts of data
(i.e., the Web)

!  Large numbers of inexpensive servers used
rather than larger, more expensive
machines

!  MapReduce is a distributed programming
tool designed for indexing and analysis
tasks

Example
!  Given a large text file that contains data

about credit card transactions
– Each line of the file contains a credit card

number and an amount of money
– Determine the number of unique credit card

numbers
!  Could use hash table – memory problems

– counting is simple with sorted file
!  Similar with distributed approach

– sorting and placement are crucial

MapReduce
!  Distributed programming framework that

focuses on data placement and distribution
!  Mapper

– Generally, transforms a list of items into another
list of items of the same length

!  Reducer
– Transforms a list of items into a single item
– Definitions not so strict in terms of number of

outputs
!  Many mapper and reducer tasks on a cluster

of machines

MapReduce
!  Basic process

– Map stage which transforms data records into
pairs, each with a key and a value

– Shuffle uses a hash function so that all pairs with
the same key end up next to each other and on
the same machine

– Reduce stage processes records in batches,
where all pairs with the same key are processed
at the same time

!  Idempotence of Mapper and Reducer
provides fault tolerance
– multiple operations on same input gives same

output

MapReduce Example

Indexing Example

 number !

Result Merging

!  Index merging is a good strategy for handling
updates when they come in large batches

!  For small updates this is very inefficient
–  instead, create separate index for new

documents, merge results from both searches
–  could be in-memory, fast to update and search

!  Deletions handled using delete list
– Modifications done by putting old version on

delete list, adding new version to new documents
index

Query Processing
!  Document-at-a-time

– Calculates complete scores for documents by
processing all term lists, one document at a time

!  Term-at-a-time
– Accumulates scores for documents by processing

term lists one at a time
!  Both approaches have optimization

techniques that significantly reduce time
required to generate scores

Document-At-A-Time

Document-At-A-Time Term-At-A-Time

Term-At-A-Time Optimization Techniques

!  Term-at-a-time uses more memory for
accumulators, but accesses disk more
efficiently

!  Two classes of optimization
– Read less data from inverted lists

» e.g., skip lists
» better for simple feature functions

– Calculate scores for fewer documents
» e.g., conjunctive processing
» better for complex feature functions

Conjunctive
Term-at-a-Time

Conjunctive
Document-at-a-Time

Threshold Methods

!  Threshold methods use number of top-
ranked documents needed (k) to optimize
query processing
–  for most applications, k is small

!  For any query, there is a minimum score that
each document needs to reach before it can
be shown to the user
–  score of the kth-highest scoring document
–  gives threshold !
–  optimization methods estimate !" to ignore

documents

Threshold Methods

!  For document-at-a-time processing, use
score of lowest-ranked document so far for
!"
–  for term-at-a-time, have to use kth-largest score

in the accumulator table
!  MaxScore method compares the maximum

score that remaining documents could have
to !"
– safe optimization in that ranking will be the

same without optimization

MaxScore Example

!  Indexer computes µtree
–  maximum score for any document containing just

“tree”
!  Assume k =3, !" is lowest score after first three

docs
!  Likely that ! " > µtree

–  ! " is the score of a document that contains both query
terms

!  Can safely skip over all gray postings

Other Approaches

!  Early termination of query processing
–  ignore high-frequency word lists in term-at-a-time
–  ignore documents at end of lists in doc-at-a-time
–  unsafe optimization

!  List ordering
–  order inverted lists by quality metric (e.g.,

PageRank) or by partial score
– makes unsafe (and fast) optimizations more likely

to produce good documents

Structured Queries

!  Query language can support specification
of complex features
– similar to SQL for database systems
– query translator converts the user’s input into

the structured query representation
– Galago query language is the example used

here
– e.g., Galago query:

Evaluation Tree for Structured Query

Distributed Evaluation

!  Basic process
– All queries sent to a director machine
– Director then sends messages to many index

servers
– Each index server does some portion of the query

processing
– Director organizes the results and returns them to

the user
!  Two main approaches

– Document distribution
» by far the most popular

– Term distribution

Distributed Evaluation

!  Document distribution
– each index server acts as a search engine for

a small fraction of the total collection
– director sends a copy of the query to each of

the index servers, each of which returns the
top-k results

–  results are merged into a single ranked list by
the director

!  Collection statistics should be shared for
effective ranking

Distributed Evaluation
!  Term distribution

– Single index is built for the whole cluster of
machines

– Each inverted list in that index is then assigned to
one index server

»  in most cases the data to process a query is not stored
on a single machine

– One of the index servers is chosen to process the
query

» usually the one holding the longest inverted list
– Other index servers send information to that

server
– Final results sent to director

Caching

!  Query distributions similar to Zipf
– About ! each day are unique, but some are very

popular
!  Caching can significantly improve

effectiveness
– Cache popular query results
– Cache common inverted lists

!  Inverted list caching can help with unique
queries

!  Cache must be refreshed to prevent stale
data

