
CS 421: Numerical Analysis
Fall 2005

Problem Set 5

Handed out: Fri., Nov. 11.

Due: Mon., Nov. 21 in lecture.

1. The Krylov space Kk(A,b) for an n × n matrix A and n-vector b is defined to be

Kk(A,b) = Span(b, Ab, A2b, · · · , Ak−1b).

(a) Argue by induction that x(k) computed by conjugate gradient lies in Kk(A,b).
(Assume the starting guess is x(0) = 0.)

(b) Show that the solution x to the linear system Ax = b lies in Kn(A,b). Assume A is
symmetric and positive definite. [Hint: Clearly the n + 1 vectors b, Ab, . . . , Anb must
be linearly dependent since they lie in Rn. Write out an equation of linear dependence,
and pay attention to the index i such that the coefficient of Aib is nonzero, and such
i is minimal with this property.]

2. Consider finding an real eigenpair of a matrix A ∈ Rn×n. This can be accomplished
by solving the system of n + 1 nonlinear equations Ax = λx, xTx = 1 for the n + 1
variables (x, λ).

(a) Write out Newton’s method for these nonlinear equations.

(b) Show how a preliminary Hessenberg factorization of A can reduce the number of
flops need per Newton iteration.

3. (a) Consider minimizing the quadratic objective function f(x) = xT Hx/2 + bTx,
where H is a given symmetric positive definite matrix and b is an n-vector. Show that
Newton’s method for minimization from any starting point solves this problem exactly
in a single step. Note: One of the examples in Chapter 6 of the book illustrates this
fact.

(b) In the Armijo line search presented in lecture, the somewhat arbitrary constant
0.1 appeared in the algorithm. It is possible to use a different value. But explain why
that constant should never exceed 0.5. [Hint: consider using the Armijo line search in
conjunction with NM for the problem described in part (a). Something goes wrong if
the constant exceeds 0.5.]

4. Implement Newton’s method for finding minimum-area surfaces. In more detail, the
problem is as follows. We want to determine an unknown surface S embedded in R3.
We are given the boundary Γ of S, which is assumed to be a simple closed curve in
R3, We want to find S, a surface of minimum area whose boundary is Γ. In fact, we
will settle for an approximation to S by triangles.
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To simplify the problem, we assume that projection of S into the (x, y) plane is a
bijection, i.e., no two points of S have the same (x, y) coordinates. This means that
we can use the following solution procedure to find an approximation to S. First,
project the boundary curve Γ into the (x, y) plane and compute a triangulation of its
interior. Then use Newton’s method for unconstrained multivariate optimization to
minimize the sum of the areas of all the triangles once they are embedded in R3, where
the boundary curve Γ is embedded into its given 3D position, the (x, y) coordinates
of interior nodes are also fixed in their given position, and the z-coordinates of the
interior nodes are the variables (unknowns) of the Newton problem. Therefore, part of
your task is to write a routine that, given the z-coordinates of the interiors, computes
the surface area of the resulting 3D mesh. (This is the routine that takes x and returns
f(x) for use in Newton’s method.)

Test this routine on three cases, which are as follows. In all cases the boundary Γ,
when projected onto the (x, y) coordinate plane, is the boundary of a unit square. In
the first case, the z coordinates of all boundary nodes are 1’s. Then the minimum-area
surface will have z-coordinate 1. In the second case, the z coordinates of all boundary
nodes are the sum of the x and y coordinates. Again in this case, the minimum-area
surface is flat, and the z-coordinates of interior nodes will also come out to be sums of
x and y coordinates. The last case tests curved boundaries; sin functions are used to
make curves that are concave up along two of the square’s edges and concave down on
the other two edges.

In more detail, here are the five routines that make up this question.

• [xyz,trilist,isbdry] = unitsquare_meshgen(n, type). This routine is pro-
vided for you on the course webpage. Its job is to take as input n, the number of
nodes per side in the unit square, and type, which is either 0, 1, or 2. This type
variable determines which of the three boundary conditions (enumerated above)
will be applied. The return variables for this function are documented on the web
page. Briefly, xyz holds the (x, y, z) coordinates of the mesh nodes. The (x, y)
coordinates for all the nodes are valid. The z-coordinates for the nodes are valid
only on the boundary; z-coordinates of interior nodes are initialized as 0’s.

• [f,g,h] = minsurf(xyz, trilist). You must write this routine. It takes as
input xyz and trilist and returns the function value f , i.e., the area of the
surface given by the 3D triangles specified by input arguments xyz and trilist.
It should also return the first and second derivatives in variables g and h respec-
tively of surface area with respect to the z-coordinates (all z-coordinates, not just
those of interior nodes).

• [f,g,h] = minsurf_wrapper(xyz, trilist,isbdry,x). This routine takes as
input same as above, plus a vector x that should contain the z-coordinates of the
interior nodes. It returns f , g, h as above, except that it masks out the entries of g
and h associated with boundary nodes (which are not used in Newton’s method).
This routine is provided for you on the course webpage.

• [x,nrmgseq,alphaseq] = newton(fghfun, x0, tol, maxit).This routine im-
plements Newton’s method. It is provided for you. Its input and output argu-
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ments are described in its comments.

• driverq4(n,type). This routine is the driver for the whole process. You must
write this routine. Its arguments n and type should be passed as input to
unitsquare_meshgen. Then it makes a function handle that wraps minsurf_wrapper.
It then calls newton. The convergence tolerance can be 10−10, and the initial guess
can be all 0’s. The routine should display or plot the sequence of ‖g‖ values and
α values. Then it should show the final mesh on the screen using the trisurf

function. See the example below.

Some hints for writing minsurf are as follows. The area of a 3D triangle is the half of
the 2-norm of the cross-product of two of its sides (represented as vectors). Review the
cross-product from your calculus book if you don’t recall it, or else lookup some other
formula for 3D triangle area. In my implementation of this function, I wrote down
the formula for the square of the 2-norm by hand, and then I used Matlab’s symbolic
toolbox to differentiate it once and twice. I cut and pasted the output from the toolbox
into my program. The derivatives of the actual function (i.e., the square root of the
squared 2-norm) can then be obtained by applying the chain rule and product rule.

To help you debug your code, I have posted a sample run of my code with some random
data in the file randomfgh.txt.

As for writing driverq4, one technique you need is to generate a function handle. The
issue here is that newton takes as input a handle to a function fghfun that takes a single
argument x and returns f, g, h. On the other hand, the actual function that evaluates
f, g, h, namely, minsurf_wrapper, needs three additional arguments, namely, xyz,
trilist, and isbdry. The standard Matlab technique of hiding additional parameters
in a function handle takes care this issue. To read about this technique, look in the
Matlab on-line help by clicking help > Full product family in the command window
menu bar, clicking the tab labeled “contents” in the help window, and then going to
the topic Matlab > Programming > Types of Functions > Anonymous Functions >
Examples of Anonymous Functions > Example 1.

Here is an example of the output from driverq4:
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