CS 421: Numerical Analysis
Fall 2005
Problem Set 2

Handed out: Wed., Sep. 21.

Due: Fri., Sep. 30 in lecture.

1. Consider a program to evaluate
F(a,b) = Va?+b? —|a|.

Implementing this formula directly in Matlab (i.e., as sqrt (a~2+b~2)-abs(a)) is prone
to overflow (e.g., in the case a,b ~ 10'%°), underflow (e.g., in the case a,b ~ 107180),
and severe cancellation (e.g., in the case |a| > |b]). Write (on paper) a matlab program
to evaluate F' that should be more robust against overflow, underflow and cancellation
than the direct implementation. It is OK if your program needs some if statements.

[Hint: first get rid of the cancellation error by multiplying and dividing by the same
factor to come up with a mathematically equivalent formula. See, e.g., p. 26 of the
text. Then deal with the overflow problem by scaling and then unscaling entries under
the square root sign. See, e.g., p. 128 of the text.]

2. Let U be an n x n nonsingular upper triangular matrix, and suppose we wish to know
its condition number in the 1-norm.

(a) To compute the condition number exactly, we need to compute U~'. Write down
(on paper) an efficient algorithm for computing U~!. How many flops (accurate to the
leading term) are required? It is suggested that your algorithm carry out backsubsti-
tution using U on the columns of /. Note that many flops can be saved because of
special structure-i.e., avoid unnecessary operations on 0’s. For example, since U~! is
upper triangular, there is no need to compute the entries below the main diagonal.

(b) For many applications, it is adequate to have merely an estimate of the condition
number, and in particular, to estimate |[U![|.. (Note that computation of ||U]|
requires only O(n?) flops, so this can be done exactly for a low cost.) One way to come
up with such an estimate is to generate a random nonzero vector x, solve Uy = x
via backsubstitution, and then estimate ||[U™!|s = ||¥|loo/||X||co- Explain how this
estimate relates to the true value of |[U ™| (i.e., what inequality is satisfied).

3. Let A be a symmetric positive semidefinite matrix.

(a) Show that A(1,1) must be nonnegative.

(b) Show that if A(1,1) = 0, then the whole first row and column of A must be all
ZET0S.

These two facts play a role in an efficient algorithm for testing whether a matrix is
positive semidefinite.

4. Write two Matlab functions, one that computes the condition number in the oo norm
of a matrix exactly using the technique of 2(a) and one that approximates it using the
max over five random vectors as in 2(b). Compare your program with built-in cond
and condest. (Note that condest computes the 1-norm, so you need to transpose
to lower-triangular before using condest.) Test all four routines on random upper
triangular matrices of various condition numbers. Note: you can make an arbitrarily
ill conditioned upper triangular matrix by either setting the diagonal entries to be
widely varying in magnitude or else by including entries above the diagonal that have
much larger magnitude than diagonal entries (or both).

Hand in listings of all m-files, a relevant table or plot, and a paragraph explaining how
well your condition number estimator works compared to Matlab’s.

