CS 421: Numerical Analysis
Fall 2000
Problem Set 5

Handed out: Wed., Nov. 8.

Due: Fri., Nov. 17 in lecture.

1. It has been proposed in the literature to use Newton’s method to compute the inverse
of a matrix. Let A be an n X n nonsingular matrix. Consider the nonlinear equations
f(X)=A— X"t Then if f(X*) =0, clearly X = A~!. It can be shown that the
Newton iteration for solving f(X) = 0 is X*+1) = 2X®) — x*) A X k),

(a) Show by a direct argument that this iteration converges quadratically provided
that all the eigenvalues of AX( — I are less than 1 in absolute value. [Hint: Let
Y = AX® — [ Find a formula for Y**1 in terms of Y® ]

(b) Show that there exists an o > 0 such using aA” for X© satisfies the condition in
(a) (i.e., for this particular X(©, all eigenvalues of AX® — I are less than 1 in absolute
value). Note that solving part (b) of this question does not require knowing how to
solve part (a).

2. Let f: R" — R be twice-continuously differentiable. Let H denote V?f(x) for some
x € R". Consider the step defined by h = —(H + tI)"'V f(x), proposed in lecture.
Note that h depends on ¢t. Considering H and V f(x) as fixed, show that ||h|. is a
nonincreasing function of ¢ for ¢t € (—Ayin(A), 00). [Hint: Diagonalize. ]

3. Consider the problem of solving a symmetric positive definite linear system Ax = b.
Derive an iterative algorithm for solving this system based on the following idea. Apply
the steepest descent optimization algorithm to the quadratic function

f(x) =x"Ax/2 — b'x.

Note that the minimizer x* of f is the same as the solution to Ax* = b, as proved in
lecture. An exact (optimal) line-search should be used.

Write out this algorithm. Every step of the algorithm should be in closed form. In
particular, come up with a closed-form expression to compute the optimal line-search
parameter ay. Each iteration should require a linear number of flops, plus a constant
number of matrix-vector multiplies.

[Note: for two points extra credit, explain how to implement this algorithm with O(n)
flops plus only one matrix-vector multiplication per iteration. Extra credit cannot raise
your score on this problem set above 40.]

4. The distance geometry problem is a well-known NP-hard problem used by chemists to
interpret the data from NMR experiments on molecules. The problem is as follows: a



molecule is composed of N atoms whose positions are xq, ..., Xy, where each x; is an
unknown 3-vector. The NMR experiment gives back a set L that is a subset of pairs
of indices (i.e., L C {1,...,N} x {1,...,N}). Furthermore, for each (i,j) € L, the
NMR experiment gives the value d;; = ||x; — X;|2. (To prevent ambiguities, assume
that ¢ < j for each (i,j) € L.) The problem is to reconstruct the atomic positions from
this partial distance data.

In Matlab, implement the Gauss-Newton method for the two-dimensional version (i.e.,
each x; € R?) of the distance geometry problem. In two dimensions, distance geometry
is still NP-hard. The nonlinear least-squares formulation of distance geometry is

min Y (||x; — x5 — d,)?

(i,5)€L
where x1,...,xy are the unknowns (i.e., 2N unknowns total).

Unfortunately, the Jacobian is rank-deficient for this problem because a uniform trans-
lation or rotation of all coordinates does not affect the distances. To force the Jaco-
bian to be full rank, assume (1,2) € L (which is possible WLOG by renumbering the
atoms), and fix x; = (0,0) and x2 = (0,dy2). This leaves only 2N — 4 unknowns,
namely, x3,...,Xy.

Test your Gauss-Newton program on some test data. To assist in the preparation of test
cases, | have created some m-files which you may download from the course website.
Invoking pairlist = threepath(N); where NV is the number of atoms desired, creates
a list L using randomization. Each row of the return variable pairlist is a pair in L,
i.e., the return variable has two columns and all whole number entries. The first row
of pairlist is always (1,2).

Then, to make distances, use the call [distlist,sol] = makedistlist(pairlist);
where pairlist is the return variable from the previous routine. Say that L is p x 2;
then this routine returns a p-vector holding distances for testing your software. It
computes the distances by actually making a randomly positioned molecule and then
measuring the distances. In this way, you are assured that the global minimum for the
least-squares problem is zero. (Recall from lecture that Gauss-Newton works best if
the solution to which it is converging has zero residual.)

These two arrays, pairlist and distlist, define the problem data. You should
write a routine to solve the problem using Gauss-Newton. Your routine should have
two loops: the outer loop is on randomized initial guesses for the positions and the
inner loop is the actual Gauss-Newton loop. The outer loop is necessary because
solving the distance geometry problem is an example of global optimization, but Gauss-
Newton carries out only local optimization. A naive but popular strategy for global
optimization is to simply re-run a local optimization algorithm for many starting points.

To assist in the grading, please organize your routines as follows. There should be a
routine for evaluating the function yielding the vector g(xs,...,xy) € RP™! encoding
the objective (i.e., the components of g are the various values of |x; — x;||5 — d7; for
each of the p — 1 entries in L, omitting the first one, which is fixed). This function
should have the form:



function fval = evalfun(positions, pairlist, distlist)

There should be a routine for evaluating the Jacobian of g:
function jac = evaljac(positions, pairlist, distlist)

This function should return a (p — 1) x (2N — 4) matrix.

In both of these calls, positions is an N X 2 array of the current iterate’s atom
positions, and pairlist and distlist are as above.

Remark: it is easier to write evaljac to first compute a p x (2V) matrix, and then to
delete the unneeded rows and columns at the end using subscripting operations. This
remark also applies to evalfun. Second remark: the Jacobian is sparse. So you are
welcome to experiment with Matlab sparse matrices, though this is not required for
the question.

In your Gauss-Newton iteration, terminate when J%g is sufficiently small (how small?),
where J denotes the Jacobian. Gauss-Newton does not always converge, so you need
a second termination test that activates when too many iterations go by (how many?)
Note also that even though ||J”g|| is involved in the Gauss-Newton test, to see whether
the problem is actually solved (i.e., you have found a globally optimal fit for the data),
you must also check ||g||. The case when [|Jg| = 0 but ||g]|| # 0 occurs when Gauss-
Newton converges to a local optimum that is not globally optimal.

Turn in listings of all m-files and a few paragraphs describing your design choices, and
describing how well everything worked. Plots are optional, but a picture is worth a
thousand words! With my implementation, I was able to globally solve problems with
N =12 but not with N = 20.



