CS 421: Numerical Analysis Fall 2000

Problem Set 3

Handed out: Mon., Oct. 2.

Due: Mon., Oct. 16.

- 1. Let L_1 and L_2 be two lines in \mathbf{R}^n . Assume that L_1 is written in "parametric form" as $L_1 = \{\mathbf{v}_1 + t_1\mathbf{w}_1 : t_1 \in \mathbf{R}\}$ where $\mathbf{v}_1, \mathbf{w}_1$ are given, and assume L_2 has the analogous form. Assume further that the lines are not parallel, i.e., $\mathbf{w}_1, \mathbf{w}_2$ are linearly independent. Consider the problem of finding the closest pair of points on L_1 and L_2 . Show that this is a least-squares problem, and develop an algorithm for solving it.
- 2. Suppose that $A \in \mathbf{R}^{m \times n}$ has rank n. The orthogonal projection onto the rangespace of A is defined to be the matrix $P = A(A^TA)^{-1}A^T$.
 - (a) Suppose A is factored as QR. Write a formula for P in terms of Q and R. By simplifying the formula, show that R is unneeded, and that P can be written in terms of Q alone.
 - (b) Given the factorization A = QR where Q is represented implicitly as a product of Householder reflections, propose an algorithm to compute $A(A^TA)^{-1}A^T\mathbf{x}$ for an arbitrary vector \mathbf{x} using the Householder reflections (i.e., without explicitly forming Q). How many flops are required for your algorithm, accurate to the leading term (not counting the flops for factorization)?
- 3. Let A be a square nonsingular matrix QR-factored as A = QR. Prove that $||Q||_F \cdot ||R||_F$ is not much larger than $||A||_F$.
- 4. Implement classical Gram-Schmidt for solving least-squares problems. Use BLAS level 2 where possible. Compare it to the method of normal equations. For these experiments, assume that Matlab's built-in least-squares solver (i.e., the backslash operator) returns the "exact answer." How do CGS and normal equations compare in terms of accuracy?

Try all three algorithms for randomly-generated problems of size 60×40 for varying condition numbers, where the condition number varies from 1 to 10^{16} . In class it will be explained how to generate a random matrix with known condition number.

Hand in: listings of all m-files, sample runs (if relevant) and at least one interesting plot showing how the errors in the CGS versus normal equations behave as the condition is varied.