CS 421: Numerical Analysis Fall 2000 **Problem Set 2**

Handed out: Wed., Sep. 20.

Due: Fri., Sep. 29 in lecture.

- 1. Exercise proposed by T. Coleman: (a) Show that for any $A \in \mathbf{R}^{n \times n}$, $||A||_2 \leq ||A||_F$. (b) Find a 2×2 diagonal matrix A such that $||A||_2 = ||A||_F$.
- 2. Let A be a symmetric positive semidefinite matrix.
 - (a) Show that A(1,1) must be nonnegative.
 - (b) Show that if A(1,1) = 0, then the whole first row and column of A must be all zeros.

These two facts play a role in an efficient algorithm for testing whether a matrix is positive semidefinite.

- 3. Let U be an $n \times n$ nonsingular upper triangular matrix. (a) Show that $||U^{-1}||_{\infty} \ge 1/\min_i |U(i,i)|$. This fact leads to a simple but not very reliable condition-number estimator (namely, $||U^{-1}||_{\infty} \approx 1/\min_i |U(i,i)|$) for upper triangular matrices. (b) In fact, show that this estimator is not reliable by constructing a 2×2 upper triangular matrix U in which $||U^{-1}||_{\infty} \ge 10^8/\min_i |U(i,i)|$.
- 4. This question requires Matlab programming. Consider two different ways to generate an $n \times n$ unit lower triangular matrix L all of whose entries are at most 1 in magnitude. Method 1 is to generate the matrix directly by putting random numbers chosen from the interval [-1,1] below the diagonal (in Matlab, you need the rand function, the triu function, and the eye function). Method 2 is to generate a square matrix A at random, compute its P^TLU factorization (in Matlab, use the lu function), and then save L (ignore P and U).

For each of these two methods, generate matrices of varying sizes up to n = 200. For each L, compute the ∞ -norm of L^{-1} . Make two plots: one showing $||L^{-1}||_{\infty}$ versus n for Method 1, and the other for Method 2. The two plots should behave quite differently, and the reason for this difference is not completely understood.

Hand in: listings of m-files, sample runs, two plots, and a paragraph of conclusions.