CS 421: Numerical Analysis Fall 2000 **Problem Set 1**

Handed out: Wed., Sep. 6.

Due: Fri., Sep. 15 in lecture.

- 1. How many flops (accurate to the leading term) are required to form the product LU, given an $n \times n$ lower triangular matrix L and an $n \times n$ upper triangular matrix U?
- 2. Let M be an $n \times n$ elementary unit lower triangular matrix, that is, a matrix of the form $I \mathbf{me}_k^T$ where $\mathbf{m} \in \mathbf{R}^n$ is a vector whose first k entries are 0's and \mathbf{e}_k is the kth column of the identity matrix. See p. 39 of the text for an example and more explanation. Let P(i,j) be the permutation matrix that exchanges row i with row j, but leaves other rows unchanged. Assume i > k and j > k. Show that P(i,j)M = NP(i,j), where N is some other elementary lower triangular matrix. Exactly how is N related to M?
- 3. Let M be an $n \times n$ elementary unit lower triangular matrix $I \mathbf{me}_k^T$ such that all entries of \mathbf{m} have absolute value at most 1. Consider solving $M\mathbf{x} = \mathbf{b}$ for \mathbf{x} . Show that the absolute values of entries in \mathbf{x} are all no more than twice the maximum absolute value in \mathbf{b} , i.e.,

$$\max_{i} |x(i)| \le 2 \max_{i} |b(i)|.$$

4. Suppose Gaussian elimination with partial pivoting applied to an $n \times n$ matrix A runs for k-1 outer loop iterations, but then fails (i.e., terminates because a pivot is 0) on step k. Show that $\operatorname{rank}(A) \geq k-1$.