CS 421: Numerical Analysis Fall 2000

Practice Final Exam

Handed out: Wed., Nov. 29.

This exam had 13 questions and 120 points total. The students had 120 minutes to complete all the questions. This exam was closed-book and closed-note, but students could consult a prepared sheet of notes (one page, $8\frac{1}{2}'' \times 11''$ written on both sides).

The following questions are short answer—a single phrase or formula suffices.

- 1. [5 points] Give a reason why Cholesky factorization is preferable to Gaussian elimination with partial pivoting (GEPP) for solving symmetric positive definite linear systems.
- 2. [5 points] Give an example of an unstable algorithm.
- 3. [5 points] How many flops (accurate to the leading term) are required to form $A^T A$, where A is an $m \times n$ matrix?
- 4. [5 points] Newton's method for solving nonlinear equations doesn't always converge. Name something that could go wrong with the method to prevent or hinder convergence.
- 5. [5 points] Consider a finite-difference method for integrating an initial value problem with time-step h. Suppose that on the kth step, the truncation error introduced on that step (i.e., disregarding errors from previous steps) is of the form $y'''(t_k)h^3/12$. What is the order of this method?
- 6. [5 points] Write down a 2×2 rank-one matrix.
- 7. [5 points] In the inverse shifted power method, what is a desirable property of the shift in order to attain fast convergence?
- 8. [5 points] Bill Clinton, the U.S. President, is not a numerical analyst. Can you name any other famous person who is not a numerical analyst?

These questions require longer answers.

9. [15 points] Let $A \in \mathbf{R}^{m \times n}$ be factored as QR, where $Q \in \mathbf{R}^{m \times m}$ is orthogonal and $R \in \mathbf{R}^{m \times n}$ is upper triangular. Assume A has full rank. Show that A and Q(:, 1:n) have the same range-space, and in fact, come up with an algorithm to solve $A\mathbf{x} = Q(:, 1:n)\mathbf{y}$ for \mathbf{x} given \mathbf{y} . Come up with a second algorithm that solves for \mathbf{y} given \mathbf{x} .

[Note: Q(:, 1:n) means the submatrix of Q formed by its first n columns.]

10. [15 points] Given $A \in \mathbf{R}^{n \times n}$ and a nonzero vector $\mathbf{y} \in \mathbf{R}^n$, suppose the statement

$$y = A * y(n:-1:1);$$

is executed repeatedly in Matlab. Clearly this is some kind of a power method. What would you expect it to converge to (after normalization)?

[Note: In case you are not familiar with Matlab notation, the above statement means: set \mathbf{y} to the product $A\mathbf{z}$, where \mathbf{z} is defined as the vector whose entries are the entries in \mathbf{y} in reverse order.]

- 11. [15 points] Describe the tradeoffs involved in using an explicit versus implicit method for integrating an initial value problem. Under what circumstances does one or the other have a clear advantage?
- 12. [15 points] Let $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^n$ have the property that, for each i = 1, ..., n, f_i depends only on $x_i, ..., x_n$ (and not on $x_1, ..., x_{i-1}$). Show that the Newton step for solving $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ can be computed especially efficiently. How many flops (accurate to the leading term) are required to compute the Newton step (once the Jacobian is known)?
- 13. [20 points] Consider the the *implicit midpoint (IM) rule* for integrating an ODE. This rule is defined by the formula:

$$\mathbf{y}_{k+1} = \mathbf{y}_k + h_k f((\mathbf{y}_k + \mathbf{y}_{k+1})/2, (t_k + t_{k+1})/2).$$

Consider applying this rule to the IVP

$$d\mathbf{y}/dt = A\mathbf{y},$$
$$\mathbf{y}(0) = \mathbf{y}_0,$$

where A is an $n \times n$ matrix. Show that if all the eigenvalues of A have negative real parts, then \mathbf{y}_k computed by IM will tend to zero as $k \to \infty$. Assume a fixed time-step (i.e., $h_k = h$ independent of k). [Hint: The matrix $(I + \alpha A)^{-1}(I + \beta A)$ has the same eigenvectors as A. Why? How are its eigenvalues related to those of A?]