Numerical Analysis Q Exam Syllabus 2000

Accuracy, stability and conditioning

KMN 2.1-2.2 or H 1.2-1.3

Linear Algebra	
Norms & condition numbers	GVL3 2.2, 2.3, 2.7 or H 2.3-2.4
Gaussian elimination	GVL3 3.1,3.2,3.4 or H 2.2
Cholesky and LDL^T factorization	GVL3 4.1,4.2 or H 2.5.1
Symmetric eigenvalue problem &	
Power method	GVL3 8.1, 8.2 or H 4.3.1-4.3.8
Singular Value Decomposition (SVD)	GVL3 2.3, 6.5 or H 4.5

Optimization

Least squares, normal eqs &	
QR factorization	GVL3 5.1,5.2,5.3 or H 3.1-3.5
Newton's method (nonlinear equations)	DS 2.2,2.4,5.1,5.2 or H 5.1-5.3
Newton's method (optimization)	DS 5.5 or H 6.2.3,6.3.3

Initial Value Problems	
Basic theory	H 9.1 or KMN 8.1
Forward & backward Euler,	
stability and order	KMN 8.4,8.5,8.8 or H 9.2,9.3,9.4

Comments: Where several texts are listed, you need to read only one, but you also must understand the principles underlying the material (which are usually facts from linear algebra or calculus). GVL3, DS and KMN are all more in-depth than H.

References

[DS] J. E. Dennis and R. B. Schnabel, *Numerical Methods for Unconstrained Optimization and Nonlinear Equations*, Prentice Hall, 1983.

[GVL3] G. Golub and C. Van Loan, *Matrix Computations*, 3^{rd} Ed., Johns Hopkins Univ. Press, 1996. (Note that earlier editions also cover the syllabus material but some sections are numbered differently.)

[H] M. Heath, Scientific Computing: An Introductory Survey, McGraw Hill, 1997

[KMN] D. Kahaner, C. Moler and S. Nash, Numerical Methods and Software, Prentice Hall, 1989.