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Classic Sync Problems
Monitors

Announcements

Synchronization Problems
• Producer-Consumer Problem
• Readers-Writers Problem
• Dining-Philosophers Problem

Producer-Consumer Problem
• Unbounded buffer
• Producer process writes data to buffer

– Writes to In and moves rightwards

• Consumer process reads data from buffer
– Reads from Out and moves rightwards
– Should not try to consume if there is no data

Out In

Need an infinite buffer

Producer-Consumer Problem
• Bounded buffer: size ‘N’
• Producer process writes data to buffer

– Should not write more than ‘N’ items

• Consumer process reads data from buffer
– Should not try to consume if there is no data

In Out

Producer-Consumer Problem 
• A number of applications:

– Compiler’s output consumed by assembler
– Assembler’s output consumed by loader
– Web server produces data consumed by client’s web browser

• Example: pipe  ( | ) in Unix
– > cat file | more
– > prog | sort … what happens here?
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Producer-Consumer Problem
First attempt to solve: Shared: int counter;

any_t buffer[N];

Init: counter = 0;Producer

while (true) {
/* produce an item in nextProduced*/
while (counter == N)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % N;
counter++;

}

Consumer

while (true) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % N;
counter--;
/* consume an item in nextConsumed*/

}

Producer-Consumer Problem
Shared: Semaphores mutex, empty, full;

Init: mutex = 1;  /* for mutual exclusion*/
empty = N; /* number empty bufs */
full = 0;      /* number full bufs */

Producer

do {
. . . 
// produce an item in nextp
. . . 
P(empty);
P(mutex);
. . . 
// add nextp to buffer
. . . 
V(mutex);
V(full);

} while (true);

Consumer

do {
P(full);
P(mutex);
. . . 
// remove item to nextc
. . . 
V(mutex);
V(empty);
. . . 
// consume item in nextc
. . . 

} while (true);

Readers-Writers Problem
• Courtois et al 1971
• Models access to a database
• Example: airline reservation

Readers-Writers Problem
• Many processes share a database
• Some processes write to the database
• Only one writer can be active at a time
• Any number of readers can be active simultaneously
• This problem is non-preemptive

– Wait for process in critical section to exit
• First Readers-Writers Problem:

– Readers get higher priority, and do not wait for a writer
• Second Readers-Writers Problem:

– Writers get higher priority over Readers waiting to read
• Courtois et al.

First Readers-Writers
Shared variables: Semaphore mutex, wrl;

integer rcount;

Init: mutex = 1, wrl = 1, rcount = 0; 

Writer
do {

P(wrl);
. . .
/*writing is performed*/
. . .
V(wrl);

}while(TRUE);

Reader
do {

P(mutex);
rcount++;
if (rcount == 1)

P(wrl);
V(mutex);
. . .
/*reading is performed*/
. . .
P(mutex);
rcount--;
if (rcount == 0)

V(wrl);
V(mutex);

}while(TRUE);

Readers-Writers Notes
• If there is a writer

– First reader blocks on wrl
– Other readers block on mutex

• Once a writer exists, all readers get to go through
– Which reader gets in first?

• The last reader to exit signals a writer
– If no writer, then readers can continue

• If readers and writers waiting on wrl, and writer exits
– Who gets to go in first?

• Why doesn’t a writer need to use mutex?
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Dining Philosopher’s Problem
• Dijkstra

• Philosophers eat/think
• Eating needs two forks
• Pick one fork at a time
• How to avoid deadlock?

Example: multiple processes competing for limited resources

A non-solution
# define N        5

Philosopher i (0, 1, .. 4)

do {
think();
take_fork(i);
take_fork((i+1)%N);
eat(); /* yummy */
put_fork(i);
put_fork((i+1)%N);

} while (true);

Will this work?
Shared: semaphore fork[5];
Init: fork[i] = 1 for all i=0 .. 4

Philosopher i

do {
P(fork[i]);
P(fork[i+1]);

/* eat */

V(fork[i]);
V(fork[i+1]);

/* think */
} while(true);

Dining Philosophers Solutions
• Allow only 4 philosophers to sit simultaneously
• Asymmetric solution

– Odd philosopher picks left fork followed by right
– Even philosopher does vice versa

• Pass a token
• Allow philosopher to pick fork only if both available

One possible solution
Shared: int state[5], semaphore s[5], semaphore mutex;
Init: mutex = 1; s[i] = 0 for all i=0 .. 4

Philosopher i

do {
take_fork(i);
/* eat */
put_fork(i);
/* think */

} while(true);

take_fork(i) {
P(mutex);
state[i] = hungry;
test(i);
V(mutex);
P(s[i]);

}

put_fork(i) {
P(mutex);
state[i] = thinking;
test((i+1)%N);
test((i-1+N)%N);
V(mutex);

}

test(i) {
if(state[i] == hungry

&& state[(i+1)%N] != eating
&& state[(i-1+N)%N != eating)

{
state[i] = eating;
V(s[i]);

}

Language Support for 
Concurrency
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Common programming errors

Process i

P(S)
CS
P(S)

Process j

V(S)
CS
V(S)

Process k

P(S)
CS

Producer

do {
. . . 
// produce an item in nextp
. . . 
P(mutex);
P(empty);
. . . 
// add nextp to buffer
. . . 
V(mutex);
V(full);

} while (true);

What’s wrong?
Shared: Semaphores mutex, empty, full;

Init: mutex = 1;  /* for mutual exclusion*/
empty = N; /* number empty bufs */
full = 0;      /* number full bufs */

Consumer

do {
P(full);
P(mutex);
. . . 
// remove item to nextc
. . . 
V(mutex);
V(empty);
. . . 
// consume item in nextc
. . . 

} while (true);

What if buffer is full?

Producer

do {
. . . 
// produce an item in nextp
. . . 
P(mutex);
P(empty);
. . . 
// add nextp to buffer
. . . 
V(mutex);
V(full);

} while (true);

What’s wrong?
Shared: Semaphores mutex, empty, full;

Init: mutex = 1;  /* for mutual exclusion*/
empty = N; /* number empty bufs */
full = 0;      /* number full bufs */

Consumer

do {
P(full);
P(mutex);
. . . 
// remove item to nextc
. . . 
V(mutex);
V(empty);
. . . 
// consume item in nextc
. . . 

} while (true);

Revisiting semaphores!
• Semaphores are still low-level

– Users could easily make small errors
– Similar to programming in assembly language

• Small error brings system to grinding halt
– Very difficult to debug

• Simplification: Provide concurrency support in compiler
– Monitors

Monitors
• Hoare 1974
• Abstract Data Type for handling/defining shared resources
• Comprises:

– Shared Private Data
• The resource
• Cannot be accessed from outside

– Procedures that operate on the data
• Gateway to the resource
• Can only act on data local to the monitor

– Synchronization primitives
• Among threads that access the procedures

Monitor Semantics
• Monitors guarantee mutual exclusion

– Only one thread can execute monitor procedure at any time
• “in the monitor”

– If second thread invokes monitor procedure at that time
• It will block and wait for entry to the monitor

⇒ Need for a wait queue

– If thread within a monitor blocks, another can enter

• Effect on parallelism?
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Structure of a Monitor
Monitor monitor_name
{

// shared variable declarations

procedure P1(. . . .) {
. . . .

}

procedure P2(. . . .) {
. . . .

}
.
.
procedure PN(. . . .) {

. . . .
}

initialization_code(. . . .) {
. . . .

}
}

For example:

Monitor stack
{

int top;
void push(any_t *) {

. . . .
}

any_t * pop() {
. . . .

}

initialization_code() {
. . . .

}
}
only one instance of stack can 
be modified at a time

Synchronization Using Monitors
• Defines Condition Variables:

– condition x;
– Provides a mechanism to wait for events

• Resources available, any writers 

• 3 atomic operations on Condition Variables
– x.wait(): release monitor lock, sleep until woken up

⇒ condition variables have waiting queues too
– x.notify(): wake one process waiting on condition (if there is one)

• No history associated with signal
– x.broadcast(): wake all processes waiting on condition

• Useful for resource manager
• Condition variables are not Boolean

– If(x) then { } does not make sense

Producer Consumer using Monitors
Monitor Producer_Consumer {

any_t buf[N];
int n = 0, tail = 0, head = 0;
condition not_empty, not_full;
void put(char ch) {

if(n == N)
wait(not_full);

buf[head%N] = ch;
head++;
n++;
signal(not_empty);

}
char get()  {

if(n == 0)
wait(not_empty);

ch = buf[tail%N];
tail++; 
n--;
signal(not_full);
return ch;

}
}

What if no thread is waiting
when signal is called? 

Monitor Producer_Consumer {
any_t buf[N];
int n = 0, tail = 0, head = 0;
condition not_empty, not_full;
void put(char ch) {

if(n == N)
wait(not_full);

buf[head%N] = ch;
head++;
n++;
signal(not_empty);

}
char get()  {

if(n == 0)
wait(not_empty);

ch = buf[tail%N];
tail++; 
n--;
signal(not_full);
return ch;

}
}

Producer
do {

// produce an item in nextp
P(empty);
P(mutex);

// add nextp to buffer
V(mutex);
V(full);

} while (true);
Consumer
do {

P(full);
P(mutex);
// remove item to nextc
V(mutex);
V(empty);
// consume item in nextc

} while (true);

Compare with Semaphore Solution
Init: mutex = 1;  empty = N; full = 0; 

Producer Consumer using Monitors
Monitor Producer_Consumer
{

condition not_full;
/* other vars */
condition not_empty;
void put(char ch) {

wait(not_full);
. . .
signal(not_empty);

}
char get()  {

. . .
}

}

Types of Monitors
What happens on notify():
• Hoare: signaler immediately gives lock to waiter (theory)

– Condition definitely holds when waiter returns
– Easy to reason about the program

• Mesa: signaler keeps lock and processor (practice)
– Condition might not hold when waiter returns
– Fewer context switches, easy to support broadcast

• Brinch Hansen: signaller must immediately exit monitor
– So, notify should be last statement of monitor procedure
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Mesa-style monitor subtleties 
char buf[N];                                          // producer/consumer with monitors
int n = 0, tail = 0, head = 0;
condition not_empty, not_full;
void put(char ch)

if(n == N)
wait(not_full);

buf[head%N] = ch;
head++;
n++;

signal(not_empty);
char get() 

if(n == 0)
wait(not_empty);

ch = buf[tail%N];
tail++; 
n--;
signal(not_full);
return ch;

Consider the following time line: 
0. initial condition: n = 0
1. c0 tries to take char, blocks    

on not_empty (releasing monitor   
lock)

2. p0 puts a char (n = 1), signals 
not_empty

3. c0 is put on run queue
4. Before c0 runs, another     

consumer thread c1 enters
and takes character (n = 0)

5. c0 runs.

Possible fixes?

Mesa-style subtleties
char buf[N];                                 // producer/consumer with monitors
int n = 0, tail = 0, head = 0;
condition not_empty, not_full;
void put(char ch)

while(n == N)
wait(not_full);

buf[head] = ch;
head = (head+1)%N;
n++;
signal(not_full);

char get() 
while(n == 0)

wait(not_empty);
ch = buf[tail];
tail = (tail+1) % N;
n--;
signal(not_full);
return ch;

When can we replace 
“while” with “if”?

Condition Variables & Semaphores

• Condition Variables != semaphores
• Access to monitor is controlled by a lock

– Wait: blocks on thread and gives up the lock
• To call wait, thread has to be in monitor, hence the lock
• Semaphore P() blocks thread only if value less than 0

– Signal: causes waiting thread to wake up
• If there is no waiting thread, the signal is lost
• V() increments value, so future threads need not wait on P()
• Condition variables have no history 

• However they can be used to implement each other

Hoare Monitors using Semaphores

For each procedure F:

P(mutex);

/* body of F */

if(next_count > 0) 
V(next);

else 
V(mutex);

Condition Var Wait: x.wait:

x_count++;
if(next_count > 0)  

V(next);
else 

V(mutex);
P(x_sem);
x.count--;

Condition Var Notify: x.notify:

If(x_count > 0) {
next_count++;
V(x_sem);
P(next);
next_count--;

}

Language Support
• Can be embedded in programming language: 

– Synchronization code added by compiler, enforced at runtime
– Mesa/Cedar from Xerox PARC
– Java: synchronized, wait, notify, notifyall
– C#: lock, wait (with timeouts) , pulse, pulseall

• Monitors easier and safer than semaphores
– Compiler can check, lock implicit (cannot be forgotten)

• Why not put everything in the monitor?

Eliminating Locking Overhead
• Remove locks by duplicating state

– Each instance only has one writer
– Assumption: assignment is atomic

• Non-blocking/Wait free Synchronization
– Do not use locks
– Optimistically do the transaction
– If commit fails, then retry



7

Optimistic Concurrency Control
• Example:  hits = hits + 1;

A) Read hits into register R1
B) Add 1 to R1 and store it in R2
C) Atomically store R2 in hits only if hits==R1 (i.e. CAS)

• If store didn’t write goto A

• Can be extended to any data structure:
A) Make copy of data structure, modify copy.
B) Use atomic word compare-and-swap to update pointer.
C) Goto A if some other thread beat you to the update.

Less overhead, deals with failures better
Lots of retrying under heavy load


