15: Networking Basics

Last Modified:
7/3/2004 1:47:08 PMM

Networking

\square So far we have talked primarily about OS support for individualcomputer systems
\square Today we are going to talk about networking computer systems together

A Network.

\square A network is simply a collection of nodes, connected by links, that communic ate and cooperate
○ $\mathcal{N o d e s}=$ End Hosts $(\mathcal{P C} s, \mathcal{P D} \mathcal{A}$, toasters?), Internal \mathcal{N} odes (Routers, switches, fubs,..)

Communication?

- If two entities are going to communicate, they must agree on the expected order and meaning of messages they exchange.
\square Asking for the time protocol
O SUCCESS FUL PROTO CO LEXCHANVG
- Hi ...Hi..Got the time?...t wo oclock
- ABORTED PROTOCOL
- Hi.. Don't bother meXX
- PROTOCOL $\mathcal{M I S} \mathcal{M A} \mathcal{A} \mathcal{C H}$
- Allo..Hello..Q uelle feuere átil....XX\&6ankstare $>$

Questions

$\square \mathcal{W h a t}$ will be the format of data exchanged? How do we agree on a language among all kinds of nodes?
\square Transmission across links is faulty can corrupt/lose data. How can we reliably excfiange information?
\square How do we find the right path between two nodes? If there are many how do we choose the best one?
$\square \mathcal{H o w}$ do nodes refer to one another or address one another?
\square What is the operating systems role in all this?

Networking protocols

\square OKlets define the "Ianguage" for all interactions over the network??
O One single language that can support everything from we 6 browsing to email to ftp to distributed file systems?
\square Human beings are able to fandle lots of complexity in the ir protocol processing. - Ambiguously defined protocols - Many protocols all at once
$\square \mathcal{H o w}$ do computers manage comple χ protocol processing?

Layered Arcfitectures

$\square \mathcal{B r e a k - u p ~ d e s i g n ~ p r o b l e m ~ i n t o ~ s m a l l e r , ~ m o r e ~}$ manageable problems

- Layers
\square Design protocols to support each well define d task
- Not one language for everything!!

Packet S witcfing

\square Packets indicate their destination
$\square \mathfrak{N}$ o predetermined path for a packet to take
\square Each intermediate note routes the packet closer to its destination

Passenger Forwarding ()

Traceroute/tracert

Internet Map

\square Traceroute gives one slice through the Internet topology
\square What does the Internet really look like?
O That is a actually a hard question to answer
O Internet Atlas Project

- hittp://www.caida.org/projects/interne tatlas/
- Tecfiniques, software, and protocols for mapping the Internet, focusing on Internet topology, performance, workload, and routing data

CAIDA: NS FNNET growth until $\underline{1995}$

Backbone nodes elevated

$\mathcal{N S} \mathcal{F} \mathcal{N e}$ tworking Arcfitecture of Late 1990 s

$\square \mathcal{N S} \mathcal{F} \mathcal{N}(E T$ Backbone Project successfully transitioned to a ne wetworking architecture in 1995.

- vBNNS (very figh speed Backbone Network Services). N(SF funded, provided by $\mathcal{M C I}$
04 original $\mathfrak{N e}$ twork Access Points ($\mathfrak{N} \mathcal{F} \mathcal{F}$ awarded)
- NSS funded Routing Arbiter project
- NetworkService Providers (not $\mathcal{N} S \mathcal{F}$ funde d)

Network Access Point

$\square \mathcal{A l l o w s}$ Internet Service Providers (IS \mathcal{P}_{S}), government, research, and educational organizations to interconnect and exchange information
\square IS P s connect the ir networks to the $\mathcal{N} \mathcal{A} P$ for the purpose of exchanging traffic with other IS Ps
$\square S u c h e x c h a n g e$ of Internet traffic is often referred to as "peering"


```
DNS: Domain Name System
People:many identifiers: Domain Name System:
    SSNN, name, Passport #
Internet flosts, routers:
    O IPaddress (32 6it)
        used for addressing
        datagrams
    O "name", e.g.,
        gaia.cs.umass.edu - used
        by fumans
Q:map between IT
    addresses and name ?
\square distributed database
    implemented in fierarchy of
    many name servers
    \square application-layer protocol
    host, routers, name servers to
    communicate to resolve names
    (address/name trans(ation)
    O note:core Internet
        function implemented as
        application-layer protocol
    O complexity at network's
                        "edge"
```


Names and addresses: why both?

$\square \mathcal{N}$ ame: www.google .com
\square IP address (one of them): 216.239.39.147

- (Also Etfiernet or other link-layer addresses.)
\square IP addresses are fixed-size numbers.
O 32 6its. $216.239 .39 .147=$ 101011000.11101111 .00100111 .10010011
$\square \mathcal{N}$ ames are memorizable, flexible:
- Variable-length
- Many names for a single IP address.
- Change address doesn't imply change name.
- iPv6 addresses are 128 6it-even farder to memorize!

Mapping \mathfrak{N} ot 1 to 1

\square One name may map to more than one IP address

- IP addresses are per network interface

O Multi-fomed machines have more than one ne tworkinterface - each with its own IP address
O Example: routers must be like this
\square One IP address may map to more than one name
O One server machine may be the we 6 server (www.foo,com), mail server (mail.foo.com)etc.

How to get names and numbers?

\square Acquisition of \mathcal{N} (ames and numbers are both regulated
O Why?

How to get a name?

\square First, get a domain name then you are free to assign sub names in that domain
O How to get a domain name coming up
$\square \mathcal{B e f o r e}$ you askfor a domain name though
O Should understand domain name structure...

- Know that you are responsible for providing authoritative $\mathcal{D N}(S$ server (actually a primary and one or more secondary $\mathcal{D N}(5$ servers) for that domain and registration information through "whois"

Domain name structure

gTLDs= Generic Top Level Domains ccTLDs = Country Code Top Level Domains

Top-level Domains (TLDs)

\square Generic Top Leve (Domains (gTLDs)
O.com - commercial organizations

○.org-not-for-profit organizations

- .edu - educational organizations
- mil - military organizations
- gov-governmental organizations
O.net - network service providers

○ $\mathcal{N e}$ w: . 6 iz, .info, name, ...
\square Country code Top Level Domains (cci $\mathcal{L D}$) O One for each country

How to get a domain name?

믄1998, non-profit corporation, Internet Corporation for Assigned \mathcal{N} ames and $\mathcal{N} u m b e r s$ (ICAN $\mathcal{N})$, was formed to assume responsibility from the USS Government
$\square I C A \mathcal{N} \mathcal{N}$ authorizes other companies to register domains in com, org and net and newg(TLDs

- Network Solutions is largest and in transitional period between US Govt and ICANN \mathcal{N} had sole authority to register domains in com, org and net

How to get an $I \mathcal{P} \mathcal{A d d r e s s}$?
$\square \mathcal{A n s}$ wer 1: \mathcal{N} ormally, answer is get an IP address from your upstream provider

- This is essential to maintain efficient routing!
\square Answer 2: If you need lots of IP addresses then you can acquire your own block of them.
- IPaddress space is a scarce resource - must prove you have fully utilized a small block before can askfor a larger one and pay $\$ \$$ (gan 2002- $\$ 2250 /$ year for $/ 20$ and $\$ 18000 /$ year for a $/ 14$)

How to get lots of IT

Addresses? Internet Registries
RIPE NCC (Rise aux IP Europiens Ne twork Coordination Centre) for Europe, Middle.East, Africa
$\mathfrak{A P N} \operatorname{IC}(\mathfrak{A s i a}$ Pacific \mathcal{N} etworkInformation Centre)for \mathcal{A} sia and Pacific
$\mathfrak{A R I N}(\mathcal{A}$ merican Registry for Internet \mathfrak{N} (umbers) for the Americas, the Caribbean, sub-safaran Africa
\mathcal{N} ote: Once again regional distribution is important for efficient routing!
Can also get \mathcal{A} utonomous System $\mathfrak{N u m n b e r s}$ ($\mathcal{A S} \mathfrak{N} s$ from these registries

Locating Resource

\square www.cnn.com is the
name of a computer
(and, implicitly, of a
file in that computer)
\square Ulse $\mathcal{D N}$ s to translate name to address

Connection

\square The protocol (fttp) sets up a connection (another protocol, tcp) between the host and cnn.com to transfer the page
\square The connection transfers the page as a byte stream, without errors: flow control + error control

Data flow

\square The byte stream flows from end to end across many links and switches: routing (+ addressing)
\square That stream is regulated and controlled by both ends: retransmission of erroneous or missing bytes; flow control

Packets

\square The network transports bytes grouped into packets
\square The packets are "self. containe $d^{\prime \prime}$ and routers handle them one by one

- The end hosts worry about errors and
pacing
- Destination sends $\mathfrak{A C R s}$
- Source checks losses

Port Numbers

\square When a packet arrives at its destination, the operating system uses the destination port number to identify which application should receive it.
$\square \mathcal{T}$ fis is called demultiplexing.

Bits

Δ
\square Equipment in each node sends the packets as a string of bits
\square That equipment is not aware of the meaning of the bits

