
1

-1

14: Memory Management

Last Modified:
6/28/2004 9:53:10 AM

-2

Limited DRAM

r With paging we could probably “function” with just
one resident memory page for each process (and
its Master Page Table)

r But reading and writing memory pages to disk is
expensive so we don’t want to do it very often

r So how much system DRAM do we really need for
each process?
m Do we give each process the same amount of memory?
m Do they all need the same amount?
m Do we have enough system DRAM to support all the

processes we want to run?(We know we can do better
than 4 GB for each one but to avoid constant paging how
many do we need)

r Two ways to answer – practical and theoretical

-3

How much memory do processes
need? (Practical Answer)

r top
r SIZE vs RES

m Absolute?
m Relative?

r Total real
memory
m Free
m Swap in use

-4

Windows Task Manager

-5

Observations About Actual
Memory Usage
r Varies significantly per process
r Are any processes paging “too heavily”?
m Could we tell just from these stats? How would

we know?

-6

How much memory do processes
need? (Theoretical Answer)
r “Working set” of a process is the set of

virtual memory pages being actively used
by the process.

r Define a working set over an interval
mWSP(w)= {pages P accessed in the last w

accesses}
m If w = total number of P accesses P makes then

WSP(w)= every virtual memory page touched by
P

r Small working set = accesses of a process
have high degree of locality

2

-7

Changes in Working Set

r Working set changes over the life of the process
m Ex. At first all the initialization code is in the working

set of a process but after some time if won’t be any
longer

r Intuitively, you need to keep the working set of a
process in memory or the OS will constantly be
bring pages on and off of disk

r Normally when we ask how much memory a given
program needs to run, the answer is either its
average or maximum working set (depending on
how conservative you want to make your estimate)

-8

Demand Paging

r When a process first starts up
m It has brand new page table with all PTE valid bits set to

false because no pages yet mapped to physical memory
m As process fetches instructions and accesses data, there

will be “page faults” for each page touched
m Only pages that are needed or “demanded” by the

process will be brought in from disk
r Eventually may bring so many pages in that must

choose some for eviction
m Once evicted, if access, will once again demand page in

from disk

-9

Demand Paging

r When working set changes (like at the beginning
of a process), you will get disk I/O – really no way
around that!

r BUT if most memory accesses result in disk I/O
the process will run *painfully* slow

r Virtual memory may be invisible from a functional
standpoint but certainly not from a performance
one
m There is a performance cliff and if you step off of it you

are going to know
m Remember building systems with cliffs is not good

-10

Prepaging?

r Anticipate fault before it happens and
prefetch the data

r Overlap fetch with computation
r Can be hard to predict and if predict wrong

evict something useful in exchange
r Programmers can give hints
m vm_advise

-11

Thrashing

r Thrashing – spending all your time moving
pages to and from disk and little time
actually making progress

r System is overcommitted
r People get like this ☺

-12

Avoiding Paging

r Given the cost of paging, we want to make
it as infrequent as we can

r Function of:
m Degree of locality in the application (size of the

working set over time)
m Amount of physical memory
m Page replacement policy

r The OS can only control the replacement
policy

3

-13

Goals of Replacement Policy

r Performance
m Best to evict a page that will never be accessed again if

possible
m If not possible, evict page that won’t be used for the

longest time
m How can we best predict this?

r Fairness
m When OS divides up the available memory among

processes, what is a fair way to do that?
• Same amount to everyone? Well some processes may not

need that amount for their working set while others are
paging to disk constantly with that amount of memory

• Give each process its working set?
m As long as enough memory for each process to have its

working set resident then everyone is happy
• If not how do we resolve the conflict?

-14

Page replacement algorithms

r Remember all the different CPU scheduling
algorithms the OS could use to choose the
next job to run

r Similarly, there are many different
algorithms for picking which page to kick
out when you have to bring in a new page
and there is no free DRAM left

r Goal?
m Reduce the overall system page fault rate?
m Balance page fault rates among processes?
mMinimize page faults for high priority jobs?

-15

Belady’s Algorithm

r Evict the page that won’t be used again for
the longest time

r Much like ShortestJobFirst!
r Has provably optimal lowest page fault rate
r Difficult to predict which page won’t be

used for a while
m Even if not practical can use it to compare

other algorithms too

-16

First-In-First-Out (FIFO)

r Evict the page that was inserted the longest time
ago
m When page in put on tail of list
m Evict head of list

r Is is always (usually) the case that the thing
accessed the longest time ago will not be accessed
for a long time?

r What about things accessed all the time!
r FIFO suffers an interesting anomaly (Belady’s

Anomaly)
m It is possible to increase the page fault rate by

increasing the amount of available memory

-17

Least-Recently Used (LRU)

r Idea: the past is a good predictor of the future
m Page that we haven’t used for the longest time likely not

to be used again for longest time
m Is past a good predictor

• Generally yes
• Can be exactly the wrong thing! Consider streaming access

r To do this requires keeping a history of past
accesses
m To be exact LRU would need to save a timestamp on each

access (I.e. write the PTE on each access!)
m Too expensive!

-18

Approximating LRU

r Remember the reference bit in the PTE
m Set if read or written

r At some regular interval (much much less often
than for each access) clear all the reference bits
m Only PTE without the ref bit clear are eligible for

eviction
r More than 1 bit of state?

m Associate some number of counter bits
m At regular interval, if ref bit is 0 increment counter and

if ref bit is 1 then zero counter
m Counter tells you # intervals since the last reference
m More bits you give to counter = more accurate

approximation

4

-19

LRU Clock

r Also called Second Chance
r Logically put all physical page frames in a

circle (clock)
r Maintain a pointer to a current page (clock

hand)
rWhen need to evict a page, look at current

page
m If ref bit off then evict
m If ref bit on clear it and move on (second

chance)

-20

LRU Clock (con’t)

r Arm moves as quickly as eviction are
requested

r If evictions rarely requested then arm
moves slowly and pages have a long time to
prove their worth by being referenced

r If evictions frequently requested then arm
moves fast and little time before the
second chance is up

-21

Fairness?

r All the replacement policies we’ve looked at
so far just try to pick the page to evict
regardless of which process the page
belongs to

rWhat if demand page in from one process
causes the eviction of another processes
page? Is that fair?

r On the other hand is it fair for one
process to have 2 times their working set
while another process has ½ their working
set and is paging heavily?

-22

Fixed vs Variable Space

r Fixed space algorithms
m Give each process a limit of pages it can use
mWhen it reaches its limit, it replaces LRU or

FIFO or whatever from its pages
mMay be more natural to give process a say in

the replacement policy used for its pages
r Variable space algorithms
m Processes set of pages grows and shrinks
m One process can ruin it for the rest but

opportunity to make globally better decisions

-23

Use Working Set

r Could ask each process to inform the OS
of the size of its working set

r OS only allow a process to start if it can
allocate the complete working set

r How easy for processes to report this?

-24

Page Fault Frequency (PFF)

r PFF is a variable-space algorithm that tries
to determine the working set size
dynamically

r Monitor page fault rage for each process
r If fault rate is above a given threshold,

give it more memory
r If fault rate is below threshhold, take

away memory
r Constant adjustment? Dampening factor so

only changes occasionally

5

-25

Best page replacement?

r Of course it depends ☺
r Interestingly if have too much memory it

doesn’t matter
m anything you do will be ok (overprovisioning)

r Also doesn’t matter if have too little
memory
m Thrashing and nothing you can do to stop it

(overcommitted)
r So much does it cost just to overprovision?

-26

Summary

r Demand paging
m Start with no physical memory pages mapped and load

them in on demand
r Page replacement Algorithms

m Belady – optimal but unrealizable
m FIFO – replace page loaded earliest
m LRU – replace page referenced earliest
m Working Set – keep set of pages in memory that induces

minimal fault rate (need program specification)
m PFF – Grow/shrink page set as a function of fault rate

r Fairness – globally optimal replacement vs
protecting processes from each other?

-27

Outtakes

r Shared memory machines
r Expanding address spaces 16 to 32 bit
r Inverted page tables
r Multics

