
1

-1

13: Memory Management

Last Modified:
6/21/2004 9:51:29 AM

-2

Recall: Address Space Map
Stack

(Space for local variables etc.
For each nested procedure call)

Heap
(Space for memory dynamically

allocated e.g. with malloc)

Statically declared variables
(Global variables)

Code
(Text Segment)

Stack Pointer

PC

Ox0000

Biggest
Virtual
Address

Sometimes
Reserved for
OS

Sometimes
Reserved for
Error Catching

-3

Processes Address Space

r Logically all of this address space should
be resident in physical memory when the
process is running

r How many machines do you use that have
232= 4 GB of DRAM? Let alone 4 GB for
each process!!

-4

Let’s be reasonable

r Does each process really need all of this
space in memory at all times?
m First has it even used it all? lots of room in the

middle between the heap growing up and the
stack growing down

m Second even it has actively used a chunk of the
address space is it using it actively right now

• May be lots of code that is rarely used (initialization
code used only at beginning, error handling code, etc.)

• Allocate space on heap then deallocate
• Stack grows big once but then normally small

-5

Freeing up System Memory

r What do we do with portions of address space
never used?
m Don’t allocate them until touched!

r What do we do with rarely used portions of the
address space?
m This isn’t so easy
m Just because a variable rarely used doesn’t mean that we

don’t need to store its value in memory
m Still it’s a shame to take up precious system memory with

things we are rarely using! (The FS could sure use that
space to do caching remember?)

m What could we do with it?

-6

Send it to disk

rWhy couldn’t we send it to disk to get it
out of our way?
m In this case, the disk is not really being used

for non-volatile storage but simply as
temporary staging area

mWhat would it take to restore running
processes after a crash? (Maybe restore to a
consistent checkpoint in the past?) Would you
want that functionality?

rWe’d have to remember where we wrote it
so that if we need it again we can read it
back in

2

-7

Logistics

r How will we keep track of which regions are paged
out and where we put them?

r What will happen when a process tries to access a
region that has been paged to disk?

r How will we share DRAM and disk with the FS?
r Will we have a minimum size region that can be

sent to disk?
m Like in FS, a fixed size block or page is useful for

reducing fragmentation and for efficient disk access

-8

Virtual Memory

r Virtual Memory = basic OS memory management
abstraction/technique

r Processes use virtual addresses
m Every time a process fetches an instruction or loads a

value into a register it refers to virtual memory address
r OS (with help from hardware) translates virtual

addresses to physical addresses
m Translation must be fast!

r OS manages sending some portions of virtual
address space to disk when needed
m Sometime translation will involve stalling to fetch page

from disk

-9

Virtual Memory provides…

r Protection/isolation among processes
r Illusion of more available system memory

-10

Virtual Memory: Isolation
Among Processes
r Protection (Data Isolation)

m Processes use virtual memory addresses
m These must be converted to physical memory addresses

in order to access the physical memory in the system
m Gives protection because processes unable even to

address (talk about) another processes address space
r Performance Isolation

m OS also tries to share limited memory resources fairly
among processes

m Can one process use so much of the memory that other
processes forced to page heavily?

m Can one process use so much of the backing store that
other processes get out of memory errors?

-11

Virtual Memory: Illusion of Full
Address Space
r We’ve seen that it makes sense for processes not

to have their entire address space resident in
memory but rather to move it in and out as needed
m Programmers used to manage this themselves

r One service of virtual memory is to provide an
convenient abstraction for programmers (“Your
whole working set is available and if necessary I
will bring it to and from disk for you”)

r Breaks in this illusion?
m When you are “paging” heavily you know it!
m Out of memory errors - what do they mean?

-12

HW Support for Virtual
Memory
r Fast translation => hardware support
m Or OS would have to be involved on every

instruction execution
r OS initializes hardware properly on

context switch and then hardware supplies
translation and protection while

3

-13

Technique 1: Fixed Partitions

r OS could divide physical memory into fixed
sized regions that are available to hold
portions of the address spaces of
processes

r Each process gets a partition and so the
number of partitions => max runnable
processes

-14

Translation/Protection With
Fixed Sized Partitions
r Hardware support
m Base register
m Physical address = Virtual Address + base

Register
m If Physical address > partition size then

hardware can generate a “fault”
r During context switch, OS will set base

register to the beginning of the new
processes partition

-15

Paging to Disk with Fixed Sized
Partitions?
r Hardware could have another register that says

the base virtual address in the partition
r Then translation/protection would go like this:

m If virtual address generated by the process is between
the base virtual address and base virtual address +
length then access is ok and physical address is Virtual
Address – Base Virtual Address Register + Base
Register

m Otherwise OS must write out the current contents of
the partition and read in the section of the address
space being accessed now

m OS must record location on disk where all non resident
regions are written (or record that no space has been
allocated on disk or in memory if a region has never been
accessed)

-16

Problems With Fixed Sized
Partitions
r Must access contiguous portion of address space

m Using both code and stack could mean a lot of paging!!!
r What is the best fixed size?

m If try to keep everything a process needs partition might
need to be very big (or we would need to change how
compiler lays out code)

m Paging in such a big thing could take a long time
(especially if only using a small portion)

m Also would “best” size vary per process?
• Some processes might not need all of the “fixed” size while

others need more than the “fixed” size
• Internal fragmentation
• One fixed sized partition = heavy paging for all processes

why?

-17

Technique 2: Variable Sized
Partitions
r Very similar to fixed sized partitions
r Add a length register (no longer fixed size for

each process) that hardware uses in
translation/protection calculations and that
OS saves/restores on context switch

r No longer have problem with internal
fragmentation

-18

Variable Partitions (con’t)

r May have external fragmentation
m As processes are created and complete, free space in

memory is likely to be divided into small pieces
m Could relocate processes to coalesce the free space?

r How does OS know how big to make each
processes partition? Also how does OS decide
what is a fair amount to give each process?

r Still have problem of only using only contiguous
regions

4

-19

Paging

r Could solve the external fragmentation
problem, minimize the internal
fragmentation problem and allow non-
contiguous regions of address space to be
resident by..

r Breaking both physical and virtual memory
up into fixed sized units
m Smaller than a partition but big enough to make

read/write to disk efficient often 4K/8K
m Often match FS – why?

-20

Finding pages?
r Any page of physical memory can hold any page

of virtual memory from any process
m How are we going to keep track of this?
m How are we going to do translation?

r Need to map virtual memory pages to physical
memory pages (or to disk locations or that no
space is yet allocated)

r Such maps called Page tables
m One for each process (virtual address x will map

differently to physcial pages for different
processes)

-21

Page Table Entries

r Each entry in a page table maps virtual
page numbers (VPNs) to physical page
frame numbers (PFNs)
m Virtual addresses have 2 parts: VPN and offset
m Physical addresses have 2 parts: PFN and

offset
m Offset stays the same is virtual and physical

pages are the same size
m VPN is index into page table; page table entry

tells PFN
m Are VPN and PFN the same size?

-22

Translation

Virtual page # offset
Virtual Address

Page frame # Page frame # offset
Physical Address

Page frame 0

Page Frame 1

Page frame N

-23

Example
r Assume a 32 bit address space and 4K page size

m 32 bit address space => virtual addresses have 32 bits and
full address space is 4 GB

m 4K page means offset is 12 bits (212 = 4K)
m 32-12 = 20 so VPN is 20 bits
m How many bits in PFN? Often 20 bits as well but wouldn’t

have to be (enough just to cover physical memory)
r Suppose virtual address

00000000000000011000000000000111 or Ox18007
m Offset is Ox7, VPN is 0x18
m Suppose page table says VPN 0x18 translates to PFN 0x148

or 101001000
r So physical address is

00000000000101001000000000000111 or 0x148007

-24

Page Table Entries Revisited

r Entry can and does contain more than just a page
frame number

r (M)odify bit – whether or not the page is dirty
r (R)eference bit – whether of not the page page

has been read/written
r (V)alid bit – whether or not the page table entry

contains valid translation
r (prot)ection bits say which operations are valid on

this page (Read/Write/Execute)
r Page frame number

M R V prot Page frame number

5

-25

Processes’ View of Paging

r Processes view memory as a contiguous address
space from bytes 0 through N
m OS may reserve some of this address space for its own

use (map OS into all processes address space is a certain
range or declare some addresses invalid)

r In reality, virtual pages are scattered across
physical memory frames (and possibly paged out to
disk)
m Mapping is invisible to the program and beyond its control

r Programs cannot reference memory outside its
virtual address space because virtual address X
will map to different physical addresses for
different processes!

-26

Advantages of Paging

r Avoid external fragmentation
m Any physical page can be used for any virtual page
m OS maintains list of free physical frames

r Minimize internal fragmentation (pages are much
smaller than partitions)

r Easy to send pages to disk
m Don’t need to send a huge region at once
m Use valid bit to detect reference to paged out regions

r Can have non-contiguous regions of the address
space resident in memory

-27

Disadvantage of Paging

r Memory to hold page tables can be large
m One PTE per virtual page
m 32 bit address space with 4KB pages and 4 bytes/PTE =

4 MB per page table per process!!!
m 25 processes = 100 MB of page tables!!!!!
m Can we reduce this size?

r Memory reference overhead
m Memory reference means 1 memory access for the page

table entry, doing the translation then 1 memory access
for the actual memory reference

m Caching translations?
r Still some internal fragmentation

m Process may not be using memory in exact multiples of
page size

m Pages big enough to amortize disk latency
-28

Reduce the Size of the Page
Tables?
r Play same trick we did with address space –

why have a PTE for virtual pages never
touched?
m Add a level of indirection ☺
m Two level page tables

-29

Two level Page Table

r Add a level of indirection
r Virtual addresses now have 3 parts: master page

#, secondary page # and offset

r Make Master page table fit in one page
m 4K page = 1024 4 byte PTEs
m So 1024 secondary page tables = 10 bits for master, still

12 for offset so 10 left for secondary
r Invalid MPTE means whole chunk of address space

not there

Virtual Address

offsetSecondary page #Master page #
Virtual page # offset

-30

Translation

Secondary page table
Page frame # offset

Physical Address

Virtual Address
offsetSecondary page #Master page #

Page frame #

6

-31

Page the page tables

r In addition to allowing MPTE’s to say
invalid could also say this secondary page
table is on disk

r Master PTE for each process must stay in
memory
m Or maybe add another level of indirection?
m Table mapping Master PTEs for each process to

DRAM location of disk LBA

-32

Too much of a good thing?

r Each level of indirection adds to access
cost

r Original page table scheme doubled the
cost of memory access (one for page table
entry and one for real memory location)

r Two level page tables triple the cost

r Solve problem with our other favorite CS
technique….caching!

-33

TLB

r Add a hardware cache inside the CPU to
store recent virtual page to page table
entries
m Fast! One machine cycle for a hit

r OS doesn’t even have to get involved when
hit in the TLB

r TLB = translation lookaside buffer

-34

TLB

r Usually a fully associative cache
r Cache tags are virtual page numbers
m FAST! All entries are searched/compared in

parallel
m SMALL! Usually only 16-48 entries (64-192KB)
m In hardware, SMALL often equals FAST

r Cache values are PTEs
r TLB is managed by the memory

management unit or MMU
mWith PTE + offset, MMU can directly calculate

the physical address

-35

How effective are TLBs?

r Only 16-48 entries
m Maps only 64-192 KB of address space
m If process active using more address space than that will

get TLB misses

r Amazingly >99% of address translations are hits!!
m What does that mean?

r Processes have very high degree of locality to
their accesses patterns
m When map a 4K page likely access one memory location,

that prefetches the rest and likely to access them next
(if so 1 in 1024 4 byte accesses will be hits)

-36

TLB miss

r On a TLB miss, what happens?
r Hardware loaded TLBs

m Hardware knows where page tables are in memory
(stored in register say)

m Tables must be in HW defined format so that it can
parse them

m X86 works this way
r Software loaded TLB

m On TLB miss generate an OS fault and OS must find and
load the correct PTE and then restart the access

m OS can define PTE format as long as loads in format HW
wants into the TLB

r Either way have to choose one of current entries
to kick out – which one?
m TLB replacement policy usually simple LRU

7

-37

Other OS responsibility?

r Even if have HW loaded TLB
rWhat else must the OS do?
m Hint: context switch

-38

Context Switch

r Contents of TLB reflect mapping from virtual to
physical - that applies to only one process

r On context switch must flush the current TLB
entries of things from last process

r Could restore entries for new process (preload) or
just set them all to invalid and generate faults for
first few accesses

r This is a big reason context switches are
expensive!!
m Recall: kernel level thread switch more expensive the

user level switch ..now you know even more why!

-39

Segmentation

r Similar technique to paging except partition
address space into variable sized segments rather
than into fixed sized pages
m Recall FS blocks vs extents?
m Variable size = more external fragmentation

r Segments usually correspond to logical units
m Code segment, Heap segment, Stack segment etc

r Virtual Address = <segment #, offset>
r HW Support? Often multiple base/limit register

pairs, one per segment
m Stored in segment table
m Segment # used as index into the table

-40

Segment Lookups

-41

Paging Segments?

r Use segments to manage logical units and
then divide each segment into fixed sized
pages
m No external fragmentation
m Segments are pageable so don’t need whole

segment in memory at a time
r x86 architecture does this

-42

Linux on x86

r 1 kernel code segment and 1 kernel data
segment

r 1 user code segment and 1 user data
segment
m Belongs to process currently running

r N task segments (stores registers on
context switch)

r All segments paged with three level page
tables

8

-43

Shared Memory

r Exploit level of indirection between virtual
address and physical address to allow processes to
communicate through memory Shared memory

r Map the same set of physical page frames into
different processes virtual address space (maybe
at different virtual addresses)
m Each process has its own PTEs so can give different

processes different types of access
(read/write/execute)

m Execute access to same regions good for shared
libraries!

-44

Duplicates of large items?
r Suppose two processes each want a private

writeable copy of the same data
r If is is small give them there own physical

pages
r They want private writeable copies so can’t

just use normal shared memory
r If it is big painful to duplicate especially if

they are each only going to change a little bit

-45

Copy-on-Write
r Instead of copying, make a shared memory region

but mark everyone’s permissions as read only (even
though they really have permission to write)

r Then if they try to write, HW will generate an
access violation fault
m OS invoked on faults and usually end processes
m In this case, OS will make a copy of just the page written

and then set the PTE to point to the new private copy
(with write access this time!) and restart

m Much like servicing a page fault where have to bring data
in from disk

r Copy-on-write often used on fork to share a copy
of the parent’s address space even though logically
parent and child each get their own private
writeable copy (esp good because often quickly
overwritten) -46

Memory Mapped Files

r Can access files through the virtual memory
system as well as through typical open/read/write
FS interface

r Map a file into a region of your address space
m File start = address X
m Then read file offset Y = look at data a memory location

X+Y
m Write file offset Y = set memory location X+Y equal to

new value
r Doesn’t read entire file when mapped

m Initially pages mapped to file are invalid
m When access the memory mapped region, translated into

FS read/write operations by the OS

