
1

-1

12: FFS,LFS and other file 
systems 

Last Modified: 
6/9/2004 12:17:20 PM

-2

Building a file system

r To build a file system from an array of disk 
sectors we have to decide things like
mMust files be allocated contiguously?
m If not how will be find the pieces?
mWhat information is stored about each file in 

the directory?
mWhere do we put new files that are created?
mWhat do we do when files grow or shrink?
m How do we recover the FS after a crash?

-3

Answers?

rWe are going to look at two different file 
systems
m Fast File System (FFS)
m Log-Structured File Systems (LFS)

-4

How are they the same?

r Both allow files to be broken into multiple 
pieces

r Both use fixed sized blocks (for the most 
part)

r Both use the inode structure we discussed 
last time

-5

Fast File System

r Fast? Well faster than original UNIX file system 
(1970’s)
m Original system had poor disk bandwidth utilization
m Remember why that is a problem? Too many seeks

r BSD UNIX folks redesigned in mid 1980’s
m Improved disk utilization by breaking files into larger 

pieces
m Made FFS aware of disk structure (cylinder groups) and 

tried to keep related things together
m Other semi-random improvements like support for long 

file names etc.

-6

Managing Free Space

r Break disk into cylinder groups and then into fixed 
size pieces called blocks (commonly 4 KB)

r Each cylinder group has a certain number of blocks
m Cylinder group’s free list maps which blocks free and 

which taken
m Cylinder groups also store a copy of the superblock which 

contains special bootstrapping information like the 
location of the root directory (replicated)

m Cylinder groups also contain a fixed number of I-nodes 
m Rest of blocks used to store file/directory data



2

-7

Inodes in FFS

r In FFS, fixed number of inodes at FS 
format time
mWhen create file, pick an inode, will never move 

(so directory entry need not be updated)
m Can run out of inodes and not be able to create 

file even though there is free space

-8

Creating a new file

r In the pre-FFS UNIX file system
m Free list for the entire disk
m Started out ordered nicely such that if ask for 

3 free blocks likely to get 3 together
m Randomized over time as files created and 

deleted such that pieces of a new file 
scattered over the disk 

m Also when create new file need a new inode too 
• All inodes at beginning of disk, far from the data

mWhen read through a file likely to be seeks 
between each block – slow!

-9

FFS

r Divide the disk into cylinder groups 
m Try to put all blocks of file into same cylinder group
m Inodes in each cylinder group so inodes near their files
m Try to put files in the same directory into the same 

cylinder group
m Big things forced into new cylinder group

r Is this fundamentally a new approach?
m Not really…space within a cylinder group gets treated 

just like whole disk was
m Space in cylinder group gets fragmented etc
m Basically sort files into bins so reduce the frequent long 

seeks

-10

Cylinder Groups

r To keep things together must know when to 
keep things apart
m Put large files into a different cylinder group

r FFS reserves 10% of the disk as free 
space
m To  be able to sort things into cylinder groups, 

must have free space in each cylinder group
m 10% free space avoids worst allocation choice 

as approach full (ex. One block in each cylinder 
group)

-11

Other FFS Improvements

r Small or large blocks?
m Orig UNIX FS had small blocks (1 KB)
m ¼ less efficient BW utilization

r Larger blocks have problems too
m For files < 4K , results in internal fragmentation
m FFS uses 4K blocks but allows fragments within a block
m Last < 4K of a file can be in fragments

r Exactly 4K? 
m FFS allows FS to be parameterized to the disk and CPU 

characteristics
m Another cool example: when laying out logically sequential 

blocks skip a few blocks in between each to allow for CPU 
interrupt processing so don’t just miss the blocks and 
force a whole rotation

-12

Update In Place

r Both the original UNIX FS and FFS were 
update-in-place

rWhen block X of a file is written then 
forever more, reads or writes to block X 
go to that location until file deleted or 
truncated

r As things get fragmented need 
“defragmenter” to reorganize things



3

-13

Another Problem with Update-
in-place

Poor crash recovery performance
r Some operations take multiple disk requests so are 

impossible to do atomically
m Ex. Write a new file (update directory, remove space 

from free list, write inode and data blocks, etc.)
r If system crashes (lose power or software 

failure), there may be file operations in progress
r When system comes back up, may need to find a 

fix these half done operations
r Where are they?

m Could be anywhere?
m How can we restore consistency to the file system?

-14

Fixed order

r Solution: Specify order in which FS ops are done
r Example to add a file

m Update free list structures to show data block taken
m Write the data block
m Update free list structures to show an inode take
m Write the inode
m Add entry to the directory

r If crash occurs, on reboot scan disk looking for 
half done operations
m Inodes that are marked taken but are not referred to by 

any directory
m Data blocks that are maked taken but are not referred 

to by any inode

-15

Fixed order (con’t)

r We’ve found a half done operation now what?
m If data blocks not pointed to by any inode then release 

them
m If inode not pointed to by any directory link into Lost 

and Found
r Fsck and similar FS recovery programs do these 

kinds of checks 
m Problems can be anywhere with update in place so must 

scan the whole FS!!
r Problems?

m Recovery takes a long time! (System shutdown 
uncleanly..checking your FS.. For the next 10 minutes!)

m Even worse(?) normal operation takes a long time because 
specific order = many small synchronous writes = slow!

-16

Write-Ahead Logging 
(Journaling)
r How can we solve problem of recovery in 

update in place systems?
r Borrow a technique from databases!
m Logging or journaling

r Before perform a file system operation like 
create new file or move a file, make a note 
in the log

r If crash, can simply examine the log to find 
interrupted operations
m Don’t need to examine the whole disk

-17

Checkpoints

r Periodically write a checkpoint to a well known 
location

r Checkpoint establishes a consistent point in the 
file system 

r Checkpoint also contains pointer to tail of the log 
(changes since checkpoint written)

r On recovery start at checkpoint and then “roll 
forward” through the log

r Checkpoint points to location system will use for 
first log write after checkpoint, then each log 
write has pointer to next location to be used
m Eventually go to next location and find it empty or invalid

r When write a checkpoint can discard earlier 
portions of the log -18

Problems with write-ahead 
logging
r Do writes twice
r Once to log and once to “real” data (still 

organized like FFS)
r Surprisingly can be more efficient than 

update-in-place! 
m Batched to log and then replayed to “real” in 

relaxed order (elevator scheduling on the disk)



4

-19

Recovery of the file system 
(not your data)
r Write-ahead logging or journaling techniques could 

be used to protect FS and user data
r Normally just used to protect the FS
r I look like a consistent FS but your data may be 

inconsistent
m Even if some of the last files you were modifying are 

inconsistent still better than FS corrupted (insert 
bootable device please L)

r Still, why do we need a “real” data layout why 
couldn’t the log be the FS? Then user data would 
get same benefits?

-20

Log-Structured File System

r Treat the disk as an infinite append only 
log
m Data blocks, inodes, directories everything 

written to the log
r Batch writes in large units called segments

(~ 1 MB)
r Garbage collection process called cleaner 

reclaims holes in the log to regenerate 
large expanses of free space for log writes

-21

Log Writes and Cleaning

-22

Finding Data

r Inodes used to find data blocks
r Finding inodes?
m Directories specify location of a file’s inode

r In an FSS, inodes are preallocated in each 
cylinder group and a given file’s inode never 
moves (update in place)

r In an LFS, inodes written to the log and so 
they move

-23

Chain Reaction

r LFS is not update in place when file block written 
its location changes
m File location changes => entry in inode (and possibly also 

indirect blocks) changes => Inode (and indirect blocks) 
must be rewritten

r Parent directory contains location of inode – must 
directory be rewritten too? 
m If so then all directories to root must be rewritten?

r No! – introduce another level of indirection
m Directory says inode*number* (rather than location)
m Inodemap to map inodenumber to current location

-24

Inode Map
r Inode map maps inode numbers to inode location

m Map kept in a special file the ifile
r When a file’s inode is written, its parent directory 

does not change only the ifile does
r Caching inode map (ifile) in memory is pretty 

important for good performance
m How big is this? Approx 2*4bytes( inode number and disk 

LBA) = 8 bytes for every file/directory in the file 
system

m Can grow dynamically unlike FFS 



5

-25

Checkpoint

r Like in Write Ahead Logging, write periodic 
checkpoints
m Kind of like FFS superblocks

r Checkpoint region has a fixed location
m Actually two fixed locations and alternate between them 

in case die in middle of writing and leave corrupt
m Checksums to verify consistent; Timestamps say which is 

most recent
r Whats in checkpoint?

m Location of inode for ifile and inodenumber of the root 
directory

m Location of next segment will write log to
m Basic FS parameters like segment size, block size, etc

-26

LFS Pros and Cons

r What is good about this?
m Leverage disk BW with large sequential writes
m Near perfect write performance
m Read performance? Good if read the same way as you 

write and many reads absorbed by caches
m Cleaning can often be done in idle time
m Fast efficient crash recovery 
m User data gets benefits of a log

r What’s bad about this?
m Cleaning overhead can be high – especially in the case of 

random updates to a full disk with little idle time
m Reads may not follow write patterns (they may not follow 

directory structure either though!)
m Additional metadata handling (inodes, indirect blocks and 

ifile rewritten frequently)

-27

Cleaning Costs

r We are going to focus on talking about the 
problem of high cleaning costs

r Often cleaning is not a problem 
m If there is plenty of idle time (many workloads have 

this), cleaning costs hidden
m Also if locality to writes, then easier to clean
m If disk not very full then, segments clean themselves 

(overwrite everything in old segments before run out of 
free spaces for new writes)

r So when is cleaning a problem?
m Cleaning expensive when random writes to full disk with 

no idle time

-28

High Cleaning Costs

Random writes, full disk (little free space), no idle time = 
Sky-rocketting cleaning costs

For every 4 blocks written, also read 4 segments and write 3 segments!

-29

Copy cleaning vs Hole-plugging

r Alternate cleaning method?
m Hole-plugging = Take one segment break extract the live 

data and use it to plug holes in other segments
m This will work well for full disk, random updates, little 

idle time!!

r Hole-plugging avoid problems with copy cleaning 
but transfers many small blocks which uses the 
disk less efficiently

r Could we get the best of both worlds?
m First we have to talk about how to quantify the tradeoffs

-30

Write Cost

r How do we quantify the benefits of large 
I/Os vs the penalty of copying data?

r Original LFS paper evaluated efficiency of 
cleaning algorithms according to the 
following metric
m (DataWrittenNewData + DataReadCleaning + 

DataWrittenCleaning)/ DataWrittenNewData

mQuantifies cleaning overhead in terms of the 
amount of data transferred while cleaning

mWhat about the impact of large vs small 
transfers?



6

-31

Cost of Small Transfers

r Quantify overhead due to using the disk 
inefficiently
m TransferTimeActual/TransferTime Ideal

mWhere TransferTime Actual includes seek,  
rotational delay and transfer time and 
TransferTime Ideal only includes transfer time

r By factoring in the cost of small transfers, 
we see the cost of holeplugging

-32

Overall Write Cost

r Ratio of actual to ideal costs where
m Actual includes cost of garbage collection and 

includes seek/rotational latency for each 
transfer

m Ideal includes only cost of original writes to an 
infinite append only log – no seek/rotational 
delay and no garbage collection

r Now we have a metric that lets us compare 
hole-plugging to copy-cleaning 
m System can use this to choose which one to do!
m Adaptive cleaning ☺

-33

Adaptive Cleaning

r When starting to run out of segments, do garbage 
collection

r Look in special file called the segmap that tells you 
how full each segment is 
m When rewrite a block in a segment, write in segmap file 

that segment is one block less full
r Estimate cost to do copy cleaning and cost to do 

hole-plugging 
m Compute overall write cost by seeing how full segments 

are

r Choose the most cost effective method this time
m Can choose a different one next time ☺

-34

Adaptive Cleaning For Random 
Update Workload

Assume no idle time to clean

-35

Adaptive Cleaning for Normal 
Usage Trace

Assume no idle time to clean
-36

As Technology Changes



7

-37

Other factors?

r How does this layout work for reads?
m Good if read in the same way you write
mWell until start reorganizing during cleaning 

(hole-plugging is worse than copy cleaning here)
m Special kind of hole-plugging that writes back 

on top of where it used to be?
r Accounting for additional metadata 

handling in the cache?
mModifying the write cost metric to account for 

“churn” in the metadata?
mModel FFS in this same way

-38

Improving FFS also

r Extent like performance (McVoy)
r FFS-realloc (McKusick)
r FFS-frag and FFS-nochange(Smith)
r Colocating FFS (Ganger)
r Soft Updates (Ganger)

-39

Other FS?

r Update-in-place
m FAT
m ext2 (extent based rather than fixed size blocks)

r Write-ahead Logging (journaling)
m NTFS
m ReiserFS (B+ tree indices, optimizations for small files)
m SGI’s XFS (extent based and B+ trees)
m Ext3 (journaling version of ext2)
m Veritas VxFS
m BeOS’s BeFS

r No Update?
m CD-ROM FS no update and often contiguous allocations 

(why does that make sense?) 

-40

Network/Distributed FS

r Sun’s NFS
r CMU’s AFS and Coda
m Transarc’s (now IBM’s) commercial AFS
m Intermezzo (Linux Coda like system)

r Netware’s NCP
r SMB

-41

Multiple FS?

rWith all these choices, do we really have to 
choose just one FS for our OS?

r If we want to allow multiple FS in the same 
OS, what would be have to do?
mMerge them into one directory hierarchy for 

the user
mMake them obey a common interface for the 

rest of the OS

-42

Mount points

r Another kind of special file interpreted by 
the file system is a mount point

r Contains information about how to access 
the root of a separate FS tree (device 
information if local, server information if 
remote, type of FS, etc.)



8

-43

Mount Points

/
a b

c

/

/
x y

z

/

/
a b

c

/

/
x y

z

/

Mount file system 2 on /b then can refer
To z as /b/x/z 

File System 1 

File System 1

-44

Common Interface?

r Different FS usually need the same “hooks” 
into the OS
m Some need special things?

r Vnode interface
m Proposed in 1986
m Allow multiple FS in the same OS (without ugly 

case statements everywhere)
m Allow FS to work on multiple OSes? (that’s 

harder)

-45

struct vnode

r One vnode structure for every opened (in-
use) file

r Contains:
m Array of pointers to procedures to implement 

basic operations on files
m Pointer to parent FS
m Pointer to FS that is mounted on top of this file 

(if any)
m Reference count so know when to release the 

vnode

-46

Vnode ops

r Open, close, create, remove, read, write
r Mkdir, rmdir, readdir

m You don’t know what that FS’s directory format will be
r Symlink, Link, readlink (soft/hard links)
r Getattr, setattr, access (get/set/check 

attributes like permissions)
r Fsync
r Seek
r Map, getpage, putpage (memory map a file)
r Ioctl (misc I/O control ops)
r Rename
r …

-47

struct vfs

r One vfs structure in the OS for each 
mounted FS

r Contains:
m Array of pointers to procedures that implement 

basic operations on file systems
m FS type
m Native block size
m Pointer to vnode this FS is mounted on

-48

vfsops
r Mount: procedure called to mount a FS of this 

type on a specified vnode
r Unmount: procedure to release this FS
r Root: return root vnode of this Fs
r Statvfs: return research usage status of the FS 
r Sync: flush all dirty memory buffers to persistent 

storage managed by this FS
r Vget: turn a fileId into a a pointer to vnode for a 

specific file
r Mountroot: mount this FS as the root FS on this 

host
r Swapvp: return vnode of file in this FS to which 

the OS can swap



9

-49

Evolving vnode interface?

r Kleiman86 => Rosenthal90

-50

Do we need FS interface?

r FS Interface
m Giving things file names seems a bit arbitrary

r FS hierarchy vs directory search
r People like to find information both ways
m I know exactly what I want don’t bother looking 

for me I will get it myself
m Give me everything matching these 

characteristics

-51

Outtakes


