12: FES,LFS and other file
systems

Last Modified:
6/9/2004 12:17:20 PM

Building a file system

0 To build a file system from an array of disk
sectors we have to decide things like
O Must files be allocated contiguously?
O If not how will be find the pieces?

O What information is stored about each file in
the directory?

O Where do we put new files that are created?
O What do we do when files grow or shrink?
O How do we recover the FS after a crash?

Answers?

0 We are going to look at two different file
systems
O Fast File System (FFS)
O Log-Structured File Systems (LFS)

How are they the same?

0 Both allow files to be broken into multiple
pieces

0 Both use fixed sized blocks (for the most
part)

0 Both use the inode structure we discussed
last time

Fast File System

0 Fast? Well faster than original UNIX file system
(1970's)
O Original system had poor disk bandwidth utilization
o Remember why that is a problem? Too many seeks
0 BSD UNIX folks redesigned in mid 1980's
o Improved disk utilization by breaking files into larger
pieces
O Made FFS aware of disk structure (cylinder groups) and
tried to keep related things together

o Other semi-random improvements like support for long
file names etc.

Managing Free Space

0 Break disk into cylinder groups and then into fixed
size pieces called blocks (commonly 4 KB)

0 Each cylinder group has a certain number of blocks

o Cylinder group’s free list maps which blocks free and
which taken

O Cylinder groups also store a copy of the superblock which
contains special bootstrapping information like the
location of the root directory (replicated)

O Cylinder groups also contain a fixed number of I-nodes

O Rest of blocks used to store file/directory data




Inodes in FES

a In FFS, fixed number of inodes at FS
format time
O When create file, pick an inode, will never move
(so directory entry need not be updated)
O Can run out of inodes and not be able to create
file even though there is free space

Creating a new file

O In the pre-FFS UNIX file system

O Free list for the entire disk

O Started out ordered nicely such that if ask for
3 free blocks likely to get 3 together

O Randomized over time as files created and
deleted such that pieces of a new file
scattered over the disk

O Also when create new file need a new inode too

« Allinodes at beginning of disk, far from the data

O When read through a file likely to be seeks

between each block - slow!

FF

O Divide the disk into cylinder groups
O Try to put all blocks of file into same cylinder group
o Inodes in each cylinder group so inodes near their files
o Try to put files in the same directory into the same
cylinder group
O Big things forced into new cylinder group
O Is this fundamentally a new approach?
o Not really...space within a cylinder group gets treated
just like whole disk was
O Space in cylinder group gets fragmented etc
o Basically sort files into bins so reduce the frequent long
seeks

Cylinder Groups

0 To keep things together must know when to
keep things apart
O Put large files into a different cylinder group

O FFS reserves 10% of the disk as free
space

O To be able to sort things into cylinder groups,
must have free space in each cylinder group

0 10% free space avoids worst allocation choice
as approach full (ex. One block in each cylinder

group)

Other FES Improvements

O Small or large blocks?
o Orig UNIX FS had small blocks (1 KB)
O Y less efficient BW utilization
O Larger blocks have problems too
o For files < 4K, results in internal fragmentation
O FFS uses 4K blocks but allows fragments within a block
O Last < 4K of a file can be in fragments
0O Exactly 4K?

O FFS allows FS to be parameterized to the disk and CPU
characteristics

o Another cool example: when laying out logically sequential
blocks skip a few blocks in between each to allow for CPU
interrupt processing so don't just miss the blocks and
force awhole rotation

-11

Update In Place

0 Both the original UNIX FS and FFS were
update-in-place

0 When block X of a file is written then
forever more, reads or writes to block X
go to that location until file deleted or
truncated

O As things get fragmented need
“defragmenter” to reorganize things




Another Problem with Update-
in-place

Poor crash recovery performance
0 Some operations take multiple disk requests so are
impossible to do atomically
O Ex. Write a new file (update directory, remove space
from free list, write inode and data blocks, etc.)
O If system crashes (lose power or software
failure), there may be file operations in progress
O When system comes back up, may need to find a
fix these half done operations
O Where are they?
o Could be anywhere?
O How can we restore consistency to the file system?

-13

Fixed order

0 Solution: Specify order in which FS ops are done
0 Example to add a file
O Update free list structures to show data block taken
O Write the data block
o Update free list structures to show an inode take
O Write the inode
O Add entry to the directory
O 1f crash occurs, on reboot scan disk looking for
half done operations
o Inodes that are marked taken but are not referred to by
any directory
O Data blocks that are maked taken but are not referred
to by any inode

Fixed order (con't)

0 We've found a half done operation now what?
o If data blocks not pointed to by any inode then release
them
O Ifinode not pointed to by any directory link into Lost
and Found
0O Fsck and similar FS recovery programs do these
kinds of checks
O Problems can be anywhere with update in place so must
scan the whole FS!!
O Problems?
O Recovery takes a long time! (System shutdown
uncleanly..checking your FS.. For the next 10 minutes!)
o Even worse(?) normal operation takes a long time because
specific order = many small synchronous writes = slow!

-15

Write-Ahead Logging
(Journaling)

O How can we solve problem of recovery in
update in place systems?

0 Borrow a technique from databases!
O Logging or journaling

0 Before perform a file system operation like
create new file or move a file, make a note
in the log

O If crash, can simply examine the log to find
interrupted operations
O Don't need to examine the whole disk

Checkpoints

0O Periodically write a checkpoint to a well known
location

O Checkpoint establishes a consistent point in the
file system

O Checkpoint also contains pointer to tail of the log
(changes since checkpoint written)

0 On recovery start at checkpoint and then “roll
forward” through the log

0O Checkpoint points to location system will use for
first log write after checkpoint, then each log
write has pointer to next location to be used
o Eventually go to next location and find it empty or invalid

O When write a checkpoint can discard earlier

portions of the log 7

Problems with write-ahead
logging

0 Do writes twice

0 Once to log and once to “real” data (still
organized like FFS)
0 Surprisingly can be more efficient than
update-in-place!
O Batched to log and then replayed to “real” in
relaxed order (elevator scheduling on the disk)




Recovery of the file system
(not your data)

O Write-ahead logging or journaling techniques could
be used to protect FS and user data

O Normally just used to protect the FS

O 1 look like a consistent FS but your data may be
inconsistent

o Even if some of the last files you were modifying are
inconsistent still better than FS corrupted (insert
bootable device please ®)

O Still, why do we need a “real” data layout why
couldn't the log be the FS? Then user data would
get same benefits?

-19

Log-Structured File System

O Treat the disk as an infinite append only
log
O Data blocks, inodes, directories everything

written to the log

0 Batch writes in large units called segments
(~1MB)

0 Garbage collection process called cleaner
reclaims holes in the log to regenerate
large expanses of free space for log writes

Log Writes and Cleaning

New writes creale holes in the log

s -
oo A
Cleamer copies live blocks io a new segment

b e .

Fia

e
b

-21

Finding Data

O Inodes used to find data blocks
0 Finding inodes?
O Directories specify location of a file's inode

O In an FSS, inodes are preallocated in each
cylinder group and a given file'sinode never
moves (update in place)

O In an LFS, inodes written to the log and so
they move

Chain Reaction

O LFS is not update in place when file block written
its location changes
O File location changes => entry in inode (and possibly also
indirect blocks) changes => Inode (and indirect blocks)
must be rewritten
0O Parent directory contains location of inode - must
directory be rewritten too?
O If so then all directories to root must be rewritten?
O No! - introduce another level of indirection
o Directory says inode *number* (rather than location)
o Inodemap to map inode number to current location

-23

Inode Map

O Inode map maps inode numbers to inode location
o Map kept in a special file the ifile

0 When a file’s inode is written, its parent directory
does not change only the ifile does

0 Caching inode map (ifile) in memory is pretty
important for good performance
O How big is this? Approx 2*4bytes(inode number and disk
LBA) = 8 bytes for every file/directory in the file
system
o Can grow dynamically unlike FFS




Checkpoint

O Like in Write Ahead Logging, write periodic
checkpoints
O Kind of like FFS superblocks

O Checkpoint region has a fixed location
o Actually two fixed locations and alternate between them
in case die in middle of writing and leave corrupt
O Checksums to verify consistent; Timestamps say which is
most recent
O Whats in checkpoint?
O Location of inode for ifile and inode number of the root
directory
O Location of next segment will write log to
O Basic FS parameters like segment size, block size, etc

-25

LFES Pros and Cons

O What is good about this?
O Leverage disk BW with large sequential writes
O Near perfect write performance
O Read performance? Good if read the same way as you
write and many reads absorbed by caches
o Cleaning can often be done in idle time
O Fast efficient crash recovery
O User data gets benefits of a log

0 What's bad about this?
O Cleaning overhead can be high- especially in the case of
random updates to a full disk with little idle time
O Reads may not follow write patterns (they may not follow
directory structure either though!)

o Additional metadata handling (inodes, indirect blocks and
ifile rewritten frequently)

Cleaning Costs

0 We are going to focus on talking about the
problem of high cleaning costs
0O Often cleaning is not a problem
o If there is plenty of idle time (many workloads have
this), cleaning costs hidden
o Also if locality to writes, then easier to clean
o Ifdisk not very full then, segments clean themselves
(overwrite everything in old segments before run out of
free spaces for new writes)
0 So when is cleaning a problem?

O Cleaning expensive when random writes to full disk with
no idle time

-27

High Cleaning Costs

Random writes, full disk (little free space), no idle time =
Sky-rocketting cleaning costs

For every 4 blocks written, also read 4 segments and write 3 segments!
Criging] Layou
p- e - A FEe >

Clemming
Rend 4 sepiments; Wriie 3 seginems

e e

Copy cleaning vs Hole-plugging

O Alternate cleaning method?
O Hole-plugging = Take one segment break extract the live
data and use it to plug holes in other segments
o This will work well for full disk, random updates, little
idle time!!
O Hole-plugging avoid problems with copy cleaning
but transfers many small blocks which uses the
disk less efficiently

O Could we get the best of both worlds?
O First we have to talk about how to quantify the tradeoffs

-29

Write Cost

0 How do we quantify the benefits of large
1/0s vs the penalty of copying data?

O Original LFS paper evaluated efficiency of
cleaning algorithms according to the
following metric

O (DataWrittenye,pata + DataReadgieaning +
DataWrittengieing)/ DataWrittenyeypata

O Quantifies cleaning overhead in terms of the
amount of data transferred while cleaning

O What about the impact of large vs small
transfers?




Cost of Small Transfers

0 Quantify overhead due to using the disk
inefficiently
O TransferTime pcp o/ TransferTime | gea
O Where TransferTime acuq includes seek,
rotational delay and transfer time and
TransferTime 4¢, Only includes transfer time
0 By factoring in the cost of small transfers,
we see the cost of holeplugging

-31

Overall Write Cost

0 Ratio of actual to ideal costs where
O Actual includes cost of garbage collection and
includes seek/rotational latency for each
transfer
O ldeal includes only cost of original writes to an
infinite append only log - no seek/rotational
delay and no garbage collection

0 Now we have a metric that lets us compare
hole-plugging to copy-cleaning
O System can use this to choose which one to do!
O Adaptive cleaning ©

Adaptive Cleaning

0 When starting to run out of segments, do garbage
collection
O Look in special file called the segmap that tells you
how full each segment is
o When rewrite a block in a segment, write in segmap file
that segment is one block less full
0 Estimate cost to do copy cleaning and cost to do
hole-plugging
O Compute overall write cost by seeing how full segments
are
0O Choose the most cost effective method this time
O Can choose a different one next time ©

-33

Adaptive Cleaning For Random
Update Workload

hole-plugeing
clesming (proedy ) =
sdapiive (greedy o

mverall write oot

WM A A G0 0 B0 90 100
disk wileation {pescem fulll
Fandorm update work koad

Assume no idle time to clean

Adaptive Cleaning for Normal
Usage Trace

Bl Pl 1P
sheanmp fomd nge )=
addapiive

oreral | wvios oo

o

Berkeley Auspes mace
Assume no idle time to clean

-35

As Technology Changes

o, ; 5 ; ;
Bode- pnpziag Clas)

oplve (5l

eveiall Wi oo

& 7o an a0 i
Sk wilizion |peras Tolli
Randem wpdate waorkland




Other factors?

0 How does this layout work for reads?
O Good if read in the same way you write
O Well until start reorganizing during cleaning
(hole-plugging is worse than copy cleaning here)
O Special kind of hole-plugging that writes back
on top of where it used to be?
O Accounting for additional metadata
handling in the cache?

O Modifying the write cost metric to account for
“churn” in the metadata?

O Model FFS in this same way

-37

Improving FES also

0 Extent like performance (McVoy)
O FFS-realloc (McKusick)

O FFS-frag and FFS-nochange(Smith)
0 Colocating FFS (Ganger)

0 Soft Updates (Ganger)

Other FS?

0 Update-in-place
o FAT
O ext2 (extent based rather than fixed size blocks)
0O Write-ahead Logging (journaling)
o NTFS
O ReiserFS (B+ tree indices, optimizations for small files)
O SGI's XFS (extent based and B+ trees)
o Ext3 (journaling version of ext2)
O Veritas VxFS
O BeOS's BeFS
O No Update?

O CD-ROM FS no update and often contiguous allocations
(why does that make sense?)

-39

Network/Distributed FS

0 Sun’'s NFS

0 CMU’s AFS and Coda
O Transarc's (now 1BM's) commercial AFS
O Intermezzo (Linux Coda like system)

O Netware’s NCP

0 SMB

Multiple FS?

0 With all these choices, do we really have to
choose just one FS for our OS?
a If we want to allow multiple FS in the same
OS, what would be have to do?
O Merge them into one directory hierarchy for
the user
O Make them obey a common interface for the
rest of the OS

-41

Mount points

0 Another kind of special file interpreted by
the file system is a mount point

0 Contains information about how to access
the root of a separate FS tree (device
information if local, server information if
remote, type of FS, etc.)




Mount Points

File System 1
Mount file system 2 on /b then can refer
Tozas/b/x/z

-43

Common Interface?

O Different FS usually need the same “hooks”
into the OS
O Some need special things?
0 Vnode interface
O Proposed in 1986
O Allow multiple FS in the same OS (without ugly
case statements everywhere)
O Allow FS to work on multiple OSes? (that's
harder)

struct vnode

0 One vnode structure for every opened (in-
use) file
0 Contains:
O Array of pointers to procedures to implement
basic operations on files
O Pointer to parent FS
O Pointer to FS that is mounted on top of this file
(if any)
O Reference count so know when to release the
vnode

-45

Vnode ops

0 Open, close, create, remove, read, write
O Mkdir, rmdir, readdir
O You don't know what that FS's directory format will be
0 Symlink, Link, readlink (soft/hard links)
0 Getattr, setattr, access (get/set/check
attributes like permissions)
Fsync
Seek
Map, getpage, putpage (memory map a file)
loctl (misc 1/0 control ops)
Rename

aaoaaooaa

struct vfs

0 One vfs structure in the OS for each
mounted FS
0 Contains:

O Array of pointers to procedures that implement
basic operations on file systems

O FS type

O Native block size

O Pointer to vnode this FS is mounted on

-47

vfsops

0 Mount: procedure called to mount a FS of this

type on a specified vnode

Unmount: procedure to release this FS

Root: return root vnode of this Fs

Statvfs: return research usage status of the FS

Sync: flush all dirty memory buffers to persistent

storage managed by this FS

0 Vget: turn a fileld into a a pointer to vnode for a
specific file

0 Mountroot: mount this FS as the root FS on this
host

0 Swapvp: return vnode of file in this FS to which
the OS can swap

a
]
a
]




Evolving vnode interface?

O Kleiman86 => Rosenthal90

-49

Do we need FS interface?

O FS Interface

O Giving things file names seems a bit arbitrary
O FS hierarchy vs directory search
0 People like to find information both ways

o | know exactly what I want don't bother looking
for me I will get it myself

O Give me everything matching these
characteristics

Outtakes

-51




