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Classical Synchronization Problems

r Bounded-Buffer Problem
(also called Producer-Consumer)

r Readers and Writers Problem

r Dining-Philosophers Problem
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Bounded Buffer
Producer/Consumer
r Finite size buffer (array) in memory shared by 

multiple processes/threads
r Producer threads “produce” an item and place in in 

the buffer
r Consumer threads remove an item from the buffer 

and “consume” it
r Why do we need synchronization?

m Shared data = the buffer state
m Which parts of buffer are free? Which filled?

r What can go wrong?
m Producer doesn’t stop when no free spaces; Consumer 

tries to consume an empty space; Consumer tries to 
consume a space that is only half-filled by the producer; 
Two producers try to produce into same space; Two 
consumers try to consume the same space,…
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Monitor Solution to Bounded-
Buffer 
container_t {

BOOL free = TRUE;
item_t   item;

}
monitor boundedBuffer {

conditionVariable notAllFull;
conditionVariable notAllEmpty;
container_t buffer[FIXED_SIZE];
int numFull = 0;
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Monitor Solution to Bounded-
Buffer 
//monitor boundedBuffer cont

void producer (){
while(allBuffersFull()){

wait(notAllFull)
}

which = findFreeBuffer();
which->free = FALSE;
which->item = produceItem();
numFull++

signal(notAllEmpty);
}

void consumer (){
while(allBuffersEmpty()){

wait(notAllEmpty)
}

which = findFullBuffer();
consumeItem(which->item);
which->free = TRUE;
numFull--;

signal(notAllFull);
}

} //end Monitor
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Semaphore Solution to 
Bounded-Buffer 
semaphore_t mutex;
semaphore_t full;
semaphore_t empty;

container_t {
BOOL free = TRUE;
item_t   item;

}
container_t 

buffer[FIXED_SIZE];

void initBoundedBuffer {
mutex.value = 1;
full.value = 0;
empty.value = FIXED_SIZE

}
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Semaphore Solution to 
Bounded-Buffer 
void producer (){

container_t *which;
wait(empty);
wait ( mutex);

which = findFreeBuffer();
which->free = FALSE;

which->item = produceItem();

signal (mutex);
signal (full);

}

void consumer (){
container_t *which;
wait(full);
wait ( mutex);

which = findFullBuffer();
consumeItem(which->item);
which->free = TRUE;

signal (mutex);
signal (empty);

}

•Can we do better?  Lock held while produce/consume? 
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Readers/writers

r Shared data area being accessed by multiple 
processes/threads

r Reader threads look but don’t touch
m We can allow multiple readers at a time. Why?

r Writer threads touch too.
m If a writer present, no other writers and no readers. 

Why?

r Is Producer/Consumer a subset of this?
m Producers and consumers are both writers
m Producer = writer type A; Consumer = writer type B  and 

no readers
m What might be a reader? Report current num full.
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Semaphore Solution to Readers/ 
Writers (Reader Preference) 
semaphore_t mutex;
semaphore_t okToWrite;
int         numReaders ;

void init{
mutex.value = 1;
okToWrite.value = 1;
numReaders = 0;

}
void writer (){

wait( okToWrite);

do writing (could pass
in pointer to write function)

signal(okToWrite) ;
}

void reader (){
wait(mutex);
numReaders ++;
if (numReaders ==1)

wait(okToWrite); //not ok to write
signal(mutex);

do reading (could pass in pointer to 
read function)

wait(mutex);
numReaders --;
if (numReaders == 0)

signal(okToWrite); //ok to write again

signal (mutex);
}

Can we do better? Fairness?
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Monitor solution to 
readers/writers
Monitor readersWriters {

int numReaders = 0;
BOOL writeInProgress =  
FALSE;

int okToWriteQueued = 0;
conditionVariable okToWrite;
conditionVariable okToRead;

void startRead () {
while (writeInProgress || 

okToWriteQueued){
wait (okToRead) ;

}
numReaders ++;
signal( okToRead );

}

void finishRead(){
numReaders--;
if (numReaders == 0){

signal( okToWrite);
}

void startWrite() {
while (numReaders || 

writeInProgress){

okToWriteQueued++;
wait( okToWrite);
okToWriteQueued-- ;

}  
writeInProgress = TRUE;  

}

void finishWrite(){
writeInProgress = FALSE;
if ( okToWriteQueued) {

signal( okToWrite);
} else {

signal(okToRead) ;
}

}
} //end monitor

This one favors writers;
How? Can readers starve?
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Semaphore Solution to Readers/ 
Writers (Fair)
semaphore_t readCountMutex, incoming, next;
int         numReaders;
BOOL        writeInProgress, readInProgress;

void init{
readCountMutex.value = 1;
incoming.value = 1;
next.value = 1;
numReaders = 0;
writeInProgress = FALSE;
readInProgress = FALSE;

}
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Semaphore Solution to Readers/ 
Writers (Fair)

void writer (){
wait (incoming);
wait(next);

writeInProgress = TRUE;

//Let someone else move on
//to wait on next
signal(incoming);

do writing

writeInProgress = FALSE;
if (next.value == 0){

signal (next);
}

}

void reader (){
wait(incoming);

if (!readInProgress) {
wait (next);

}

wait(readCountMutex);
numReaders++;
readInProgress = TRUE;
signal(readCountMutex);

//If next on incoming is 
//writer will block on next
//If reader will come in
signal(incoming);

do reading

wait(readCountMutex);
numReaders--;
if (numReaders == 0){

readInProgress = FALSE;
if (next.value == 0){

signal (next);
}

}
signal(readCountMutex); -14

Remember

r Game is obtaining highest possible degree of 
concurrency  and greatest ease of programming

r Tension
m Simple and high granularity locks easy to program
m Simple and high granularity locks often means low 

concurrency
r Getting more concurrency means

m Finer granularity locks, more locks
m More complicated rules for concurrent access 
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Dining-Philosophers Problem
//array of chopsticks, chopstick i is 
to the right of philosopher i

semaphore_t 
chopstick[NUM_PHILOSOPHERS];

void init(){

for (i=0; i< NUM_PHILOSOPHERS; i++)

chopstick[i].value = 1;

}
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Semaphore Solution to Dining 
Philosophers 
void philosophersLife(int i){

while (1) {
int rightChopstick, leftChopstick;
think(); 

//figure out which chopsticks I need
rightChopstick = i;
leftChopstick = i-1+ NUM_PHILOSOPHERS % NUM_PHILOSOPERS;

//grab chopsticks
wait(chopstick[rightChopstick])
wait(chopstick[leftChopstick]);

eat();

//putdown chopsticks
signal(chopstick[rightChopstick])
signal(chopstick[leftChopstick]);

} 
}

Problem?

philosopher 0 gets chopstick 0
philosopher 1 gets chopstick 1
….
philosopher N gets chopstick N

Deadlock!     Solution?
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Deadlock

r Deadlock exists in a set of 
processes/threads when all 
processes/threads in the set are waiting 
for an event that can only be caused by 
another process in the set (which is also 
waiting!).

r Dining Philosophers is a perfect example. 
Each holds one chopstick and will wait 
forever for the other. 
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Fixing Dining Philosophers

r Make philosophers grab both chopsticks 
they need atomically
m Maybe pass around a token (lock) saying who 

can grab chopsticks
m Get a global lock before can lock any chopsticks

r Make a philosopher give up a chopstick
r Others?
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Resource Allocation Graph

r Deadlock can be described through a 
resource allocation graph

r Each node in graph represents a 
process/thread or a resource

r An edge from node P to R indicates that 
process P had requested resource R

r An edge from node R to node P indicates 
that process P holds resource R

r If graph has cycle, deadlock may exist. If 
graph has no cycle, deadlock cannot exist.
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Cycle in Resource Allocation 
Graph

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Chopstick 2

Chopstick 1Chopstick 0

Chopstick 3

wait(chopstick[i])
wait(chopstick[(i-1) % NUM_PHILOSOPHERS])

Cycle: P0, C3, P3, C2, P2, 
C1, P1, C0, P0

Philosopher 1 has chopstick 1 and
wants chopstick 0

Philosopher  
2 has 
chopstick 2 
and
wants 
chopstick 1

Philosopher 3 has chopstick 3 
and wants chopstick 2

Philosopher 0 has 
chopstick 0 and wants 
chopstick 3
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Better Semaphore Solution to 
Dining Philosophers 
void philosophersLife(int i){

while (1) {
think(); 
if ( rightChopstick < leftChopstick}{

wait(chopstick[rightChopstick]);
wait(chopstick[leftChopstick]);

} else {
wait(chopstick[leftChopstick]);
wait(chopstick[rightChopstick]);

} 

eat();

signal(rightChopstick);
signal(leftChopstick);

} 
}

Why better?

One philosopher 
reaches right first when 
all others reach left 

Two philsophers reach 
for same one and one will 
lose; The one who wins 
will get both chopsticks 
and finish – allowing 
everyone to finish 
eventually

No circular wait! No 
deadlock!!

Always wait for low chopstick first
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No Cycle in Resource Allocation 
Graph

if ( rightChopstick < leftChopstick}{
wait(chopstick[rightChopstick]);
wait(chopstick[leftChopstick]);

} else {
wait(chopstick[leftChopstick]);
wait(chopstick[rightChopstick]);

} 

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Chopstick 2

Chopstick 1Chopstick 0

Chopstick 3

No cycle! 
No deadlock!

This is not the 
only possible 
outcome. P1 
could get 
chopstick 0 
first, similarly 
P3 could get 
chopstick 3 
first. 
Regardless, 
someone will 
get both their 
chopsticks and 
be able to 
finish
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Conditions for Deadlock

r Deadlock can exist only if the following four 
conditions are met;
m Mutual Exclusion – some resource must be held 

exclusively 
m Hold and Wait – some process must be holding one 

resource and waiting for another
m No preemption – resources cannot be preempted
m Circular wait – there must exist a set of processes 

(p1,p2, …pn) such that p1 is waiting for p2, p2 is waiting 
for p3, … pn is waiting for p1

r All these held in the Dining Philosopher’s first 
“solution” we proposed

-24

Deadlock Prevention

r Four necessary  and sufficient conditions 
for deadlock
m Mutual Exclusion
m Hold and Wait
m No Preemption
m Circular Wait

r Preventing mutual exclusion isn’t very 
helpful. If we could allow resources to be 
used concurrently then we wouldn’t need 
the synchronization anyway!

r Preventing the others?
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Preventing Hold and Wait

r Do not allow processes to hold a resource when 
requesting others
m Make philosophers get both chopsticks at once
m Window’s WaitForMultipleObjects

r Make processes ask for all resources they need at 
the beginning
m Disadvantage: May not need all resources the whole time
m Can release them early but must hold until used

r Make processes release any held resources before 
requesting more
m Hard to program!
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Preventing No Preemption

r Preemption (have to love those double negative ☺ )
r Allow system to take back resources once granted

m Make some philosopher give back a chopstick
r Disadvantage: Hard to program

m System figures out how to take away CPU and memory 
without breaking programmer’s illusion

m How do you take away access to an open file or a lock 
once granted?? Would need API to notify program and 
then code to deal with the removal of the resource at 
arbitrary points in the code

• Checkpoint and Rollback?
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Preventing Circular wait

r Impose an ordering on the possible resources and 
require that processes request them in a specific 
order

r How did we prevent deadlock in dining 
philosophers?
m Numbered the chopsticks
m Made philosophers ask for lowest number chopstick first

r Disadvantage: 
m Hard to think of all types of resources in system and 

number them consistently for all cooperating processes
m I use a resource X and Y , you use resource Y and Z and 

W, someone else uses W, T, R – which is resource 1? 
(shared files, databases, chopsticks, locks, events, …)

m For threads in the same process or closely related 
processes often isn’t that bad
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Prevention vs Avoidance

r Both actually prevent deadlock
m Deadlock Prevention does so by breaking one of the four 

necessary conditions
m Deadlock Avoidance allows processes to make any request 

they want (not constrained in ways so as to break one of 
the four conditions) *as long as* they declare their 
maximum possible resource requests at the outset

r Both can deny resource requests that would not 
actually lead to deadlock in practice
m Philosophers may never get into deadlock at all even with 

no intervention
m Likelihood? How long do they think? How long eat?
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Deadlock avoidance

r Say we don’t want to write the code such 
that it is impossible to deadlock could still 
prevent deadlock by having the system 
examine each request and only grant if 
deadlock can be avoided

r Processes declare maximum resources they 
may ever request at the beginning

r Then during execution, system will only 
grant a request if it can ensure that all 
processes can run to completion without 
deadlock
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Grant a resource?

r Consider a set of processes P1, P2, …Pn
which each declare the maximum resources 
they might ever request  

r When Pi actually requests a resource, the 
system will grant the request only if the 
system could grant Pi’s maximum resource 
requests with the resource currently 
available plus the resources held by all the 
processes Pj for j < I

r May need P1 to complete then P2 all the 
way to Pi but Pi can complete
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Banker’s Algorithm
r Decide whether to grant resource (loan or invest 

money, give a philosopher a chopstick, allow 
process to obtain a lock, …)

r Let there be  P processes and R resources; Keep 
track of
m Number of units of each resource available
m Maximum number of units of each resource that each 

process could request
m Current allocation of each resource to each process

r Real bankers cannot return money to everyone at 
once
m Have a reserve requirement and rely on federal gov’t to 

bail them out (FDIC)
m Play odds on who will return money
m Also bankers typically loan one processes resource to 

another; OS starts out owning the resources not 
borrowing -32

Banker’s Algorithm

unsigned available[R]; 
unsigned allocation[P][R];
unsigned maximum[P][R];

startProcess(unsigned p){
for (i=0; i< R; i++){

maximum[p][i] = max number of resource i 
that process p will need at one time; 
}

}
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Banker’s Algorithm
BOOL request(unsigned p, unsigned r){

if (allocation[p][r] + 1 > maximum[p][r]){
//p lied about its max
return FALSE;

}

if (available[p][r] == 0){
//can’t possibly grant; none available
return FALSE;

}

if (canGrantSafely(p, r))
allocation[p][r]++;
available[r]--;
return TRUE;

} else {
return FALSE;

}
}
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Banker’s Algorithm
BOOL canGrantSafely(unsigned p, unsigned r){

unsigned free[R]; 
unsigned canFinish[P];

for (j=0; j< R; j++) free[j] = available[j];
for (i=0; i< P; i++) canFinish[i] = FALSE;

lookAtAll: for (i=0; i< P; i++){
allCanFinish = TRUE; 
if (!canFinish[i])

allCanFinish = FALSE;
couldGetAllResources = TRUE;
for (j=0; j< R; j++){

if (maximum[i][j] - allocation[i][j] >  free[j]){
couldGetAllResources = FALSE;

}
}
if (couldGetAllResources) {

canFinish[i] = TRUE;
for (i=0; i< R; i++) free[j] += allocation[i][j];

}
}

} //for all processes

if (allCanFinish) {
return TRUE;

}else {
goto lookAtAll;

}
}
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Avoidance vs Prevention

r Typically, system does avoidance; 
Programmer does prevention

r Deadlock avoidance usually results in 
higher resource allocation by allowing more 
combinations of resource requests to 
proceed than deadlock prevention
m Not always – depends on ratio of processes 

maximum resource demands to average 
resource demands 
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If don’t prevent deadlock?

r If don’t prevent deadlock - either deadlock 
prevention or deadlock avoidance)- then how will 
the system deal with deadlock if (when!) it occurs:

r Two choices
m Enable the system to detect deadlocks and if it does 

recover
m Hope they never happen and rely on manual detection and 

recovery (“darn my process is hung again..kill process”)

r Dining Philosophers?
m Force a philosopher to put down a chopstick = preemption
m Kill a philosopher? (sounds a bit brutal)
m Kill all philosophers?
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Deadlock Detection

r If don’t want to ever deny requests when have 
resources to grant them, then deadlock may occur

BOOL request(unsigned p, unsigned r){

if(available[p][r] >  0){
allocation[p][r]++;
available[r]--;
return TRUE;

} else { 
return FALSE;

}
}
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Deadlock Detection Algorithm
BOOL deadlockHasOccured(unsigned p, unsigned r)
{

unsigned work[R]; 
unsigned canFinish[P];

//initialization
for (j=0; j< R; j++) work[j] = available[j];
for (i=0; i< P; i++){

numResourcesAllocated = 0;
for (j=0; j< R; j++) {

numResourcesAllocated += allocation[i][j];
}
if (numResourcesAllocated == 0){

canFinish [i] = TRUE; //can’t be deadlocked if no hold and 
wait

} else {
canFinish [i] = FALSE; //don’t know if this one is 

deadlocked
}

}
.. .. .. 
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Deadlock Detection Algorithm
tryToFinishOne : for (i=0; i< P; i++){

finishedSomeoneThisTime = FALSE;
allFinished = TRUE;
if (! canFinish[i]){ 

allFinished = FALSE;           
if ( (i != p) || (work[r] > 1) ) ) {

canFinish [i] = TRUE; 
finishedSomeoneThisTime = TRUE;
for (j=0; j< R; j++) work[j] += allocation[i][j];

}
}

}
if (allFinished){

return FALSE; //no deadlock
} else {

if (! finishedSomeoneThisTime ){
return TRUE; //deadlock for pi st canFinish[i] == FALSE

} else {
goto tryToFinishOne;

}
}

} //end deadlockHasOccured -40

Running deadlock detection?

r Unlike with deadlock avoidance algorithm have 
choice of when to run

r If run on every resource request approaches 
avoidance 
m No sense of maximum resource requirement though

r Deciding how often
m How often is deadlock likely to occur?
m How many processes will be affected?
m When CPU utilization drops below X%? (Overall or just 

for some processes? What if spin locks?)
m What are signs that it might be good to run deadlock 

detection algorithm?
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Recovery from Deadlock

r If system detects deadlock, what can it do 
to break the deadlock 

r What do people do after manual detection?
m Kill a process (es)
m Reboot the system
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Recovering from deadlock

r How many?
m Abort all deadlocked processes
m Abort one process at a time until cycle is eliminated (If 

one doesn’t resolve deadlock, wait till deadlock detection 
algorithm runs again? Specifically run again with 
assumption that one of the processes is dead?)

r Which ones?
m Lowest priority with canFinish = FALSE?
m One that has been running the least amount of time (less 

work to redo)
m Process that hasn’t been killed before? Anyway to tell?
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Prevention vs Avoidance vs
Detection
r Spectrum of low resource utilization

m Prevention gives up most chances to allocate resources
m Detection always grants resource if they are available 

when requested

r Also spectrum of runtime “overhead”
m Prevention has very little overhead; programmer obeys 

rules and at runtime system does little
m Avoidance uses banker’s algorithm (keep max request for 

each process and then look before leap) 
m Detection algorithm basically involves building the full 

resource allocation graph  
m Avoidance and detection algorithms both O(R*P2)
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Real life?

r Most used prevention technique is resource 
ordering – reasonable for programmers to attempt

r Avoidance and Detection to expensive
r Most systems use manual detection and recovery

m My process is hung – kill process
m My machine is locked up – reboot

r Write code that deadlocks and run it on Linux and 
on Windows – what happens?
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Outtakes
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Gridapp

r What would it be like to do deadlock 
avoidance/detection for gridapp?

r For avoidance:
m Would have to declare it’s max usage each time 

through the loop for a thread or max usage 
would be the whole grid and get no 
concurrency?

r For detection, that would be be cool
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Dining Philosophers Example
monitor diningPhilosophers 
{
enum State{thinking, hungry, eating}; 

State moods[NUM_PHILOSOPHERS];
conditionVariable self[NUM_PHILOSOPHERS];

void pickup(int i); 
void putdown(int i) ;
void test(int i) ;
void init() {

for (int i = 0; i < NUM_PHILOSOPHERS; i++)
state[i] = thinking;

}
}
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Dining Philosophers
void pickupChopsticks(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdownChopsticks(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+ (NUM_PHILOSOPHERS-1 ) ) % 

NUM_PHILOSOPHERS);
test((i+1) % NUM_PHILOSOPHERS);

}
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Dining Philosophers

void test(int i) {

if ( (state[(I + NUM_PHILOSOPHERS -1) % 
NUM_PHILOSOPHERS] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % NUM_PHILOSOPHERS] != eating)) {

state[i] = eating;
self[i].signal();

}
}
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Dining Philosophers
void philosophersLife(int i) {

while(1){
think();
pickupChopticks();
eat();
putdownChopsicks();

}
}
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Semaphore Solution to Readers/ 
Writers (Writer Preference)
semaphore_t mutex1, mutex2;
semaphore_t writePending, readersBlock, writersBlock;//☺

;
int         numReaders, numWriters;

void init{
mutex1.value = 1;
mutex2.value = 1;
writePending.value = 1;
readersBlock.value = 1;
writersBlock.value = 1;
numReaders = 0;
numWriters = 0;

}
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Semaphore Solution to Readers/ 
Writers (Writer Preference)

void writer (){
wait(mutex2);
numWriters++;
if (numWriters ==1){

wait( readersBlock );
}
signal(mutex2);

wait(writersBlock) ;
do the writing
signal(writersBlock);

wait (mutex2);
numWriters --;
if (numWriters == 0){
signal(readersBlock) ;

}
signal(mutex2);

}

void reader (){
wait(writePending) ;
wait ( readersBlock );
wait (mutex1);
numReaders ++;
if (numReaders == 1){

wait(writersBlock);
}
signal(mutex1);

signal(readersBlock);  
signal(writePending);

do reading

wait (mutex1);
numReaders --;
if (numReaders ==0){
signal(writersBlock) ;

}
signal(mutex1);

}

First writer waits in line with the readers; 
Other writers wait with writers
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Other Classic Synchronization 
Problems
r Sleepy Barber
r Traffic lights for two lane road through a 

one lane tunnel (McNutt ch8 + 9)


