
1

-1

8: Classic Synchronization
Problems and Deadlock

Last Modified:
6/14/2004 11:54:49 AM

-2

Monitor

Event

Condition
variable

Semaphore

Lock

0/1

0/1

N/A

INT

0/1

Value

Y

Y

Y

Y

?

Queue

Call proc in monitor

Wait
If Value = 0, put
self on queue

Wait
Put self on queue

Wait
value —
If value < 0
Add self to queue

Lock
Block till value = 0;
set value = 1

“acquire” op

Return from proc
in monitor

Signal
Value = 1
Wake up all

Signal
If process on
queue, wake up
one

Signal
Value++
If value <=0
Wake up one

Unlock
Value = 0

“release” op

No

Default signal does

Easy to
Support
A signal all

No?
While (getValue()<0){

Signal
}

No

“broadcast” or
“release all” op

-3

Classical Synchronization Problems

r Bounded-Buffer Problem
(also called Producer-Consumer)

r Readers and Writers Problem

r Dining-Philosophers Problem

-4

Bounded Buffer
Producer/Consumer
r Finite size buffer (array) in memory shared by

multiple processes/threads
r Producer threads “produce” an item and place in in

the buffer
r Consumer threads remove an item from the buffer

and “consume” it
r Why do we need synchronization?

m Shared data = the buffer state
m Which parts of buffer are free? Which filled?

r What can go wrong?
m Producer doesn’t stop when no free spaces; Consumer

tries to consume an empty space; Consumer tries to
consume a space that is only half-filled by the producer;
Two producers try to produce into same space; Two
consumers try to consume the same space,…

-5

Monitor Solution to Bounded-
Buffer
container_t {

BOOL free = TRUE;
item_t item;

}
monitor boundedBuffer {

conditionVariable notAllFull;
conditionVariable notAllEmpty;
container_t buffer[FIXED_SIZE];
int numFull = 0;

-6

Monitor Solution to Bounded-
Buffer
//monitor boundedBuffer cont

void producer (){
while(allBuffersFull()){

wait(notAllFull)
}

which = findFreeBuffer();
which->free = FALSE;
which->item = produceItem();
numFull++

signal(notAllEmpty);
}

void consumer (){
while(allBuffersEmpty()){

wait(notAllEmpty)
}

which = findFullBuffer();
consumeItem(which->item);
which->free = TRUE;
numFull--;

signal(notAllFull);
}

} //end Monitor

2

-7

Semaphore Solution to
Bounded-Buffer
semaphore_t mutex;
semaphore_t full;
semaphore_t empty;

container_t {
BOOL free = TRUE;
item_t item;

}
container_t

buffer[FIXED_SIZE];

void initBoundedBuffer {
mutex.value = 1;
full.value = 0;
empty.value = FIXED_SIZE

}

-8

Semaphore Solution to
Bounded-Buffer
void producer (){

container_t *which;
wait(empty);
wait (mutex);

which = findFreeBuffer();
which->free = FALSE;

which->item = produceItem();

signal (mutex);
signal (full);

}

void consumer (){
container_t *which;
wait(full);
wait (mutex);

which = findFullBuffer();
consumeItem(which->item);
which->free = TRUE;

signal (mutex);
signal (empty);

}

•Can we do better? Lock held while produce/consume?

-9

Readers/writers

r Shared data area being accessed by multiple
processes/threads

r Reader threads look but don’t touch
m We can allow multiple readers at a time. Why?

r Writer threads touch too.
m If a writer present, no other writers and no readers.

Why?

r Is Producer/Consumer a subset of this?
m Producers and consumers are both writers
m Producer = writer type A; Consumer = writer type B and

no readers
m What might be a reader? Report current num full.

-10

Semaphore Solution to Readers/
Writers (Reader Preference)
semaphore_t mutex;
semaphore_t okToWrite;
int numReaders ;

void init{
mutex.value = 1;
okToWrite.value = 1;
numReaders = 0;

}
void writer (){

wait(okToWrite);

do writing (could pass
in pointer to write function)

signal(okToWrite) ;
}

void reader (){
wait(mutex);
numReaders ++;
if (numReaders ==1)

wait(okToWrite); //not ok to write
signal(mutex);

do reading (could pass in pointer to
read function)

wait(mutex);
numReaders --;
if (numReaders == 0)

signal(okToWrite); //ok to write again

signal (mutex);
}

Can we do better? Fairness?

-11

Monitor solution to
readers/writers
Monitor readersWriters {

int numReaders = 0;
BOOL writeInProgress =
FALSE;

int okToWriteQueued = 0;
conditionVariable okToWrite;
conditionVariable okToRead;

void startRead () {
while (writeInProgress ||

okToWriteQueued){
wait (okToRead) ;

}
numReaders ++;
signal(okToRead);

}

void finishRead(){
numReaders--;
if (numReaders == 0){

signal(okToWrite);
}

void startWrite() {
while (numReaders ||

writeInProgress){

okToWriteQueued++;
wait(okToWrite);
okToWriteQueued-- ;

}
writeInProgress = TRUE;

}

void finishWrite(){
writeInProgress = FALSE;
if (okToWriteQueued) {

signal(okToWrite);
} else {

signal(okToRead) ;
}

}
} //end monitor

This one favors writers;
How? Can readers starve?

-12

Semaphore Solution to Readers/
Writers (Fair)
semaphore_t readCountMutex, incoming, next;
int numReaders;
BOOL writeInProgress, readInProgress;

void init{
readCountMutex.value = 1;
incoming.value = 1;
next.value = 1;
numReaders = 0;
writeInProgress = FALSE;
readInProgress = FALSE;

}

3

-13

Semaphore Solution to Readers/
Writers (Fair)

void writer (){
wait (incoming);
wait(next);

writeInProgress = TRUE;

//Let someone else move on
//to wait on next
signal(incoming);

do writing

writeInProgress = FALSE;
if (next.value == 0){

signal (next);
}

}

void reader (){
wait(incoming);

if (!readInProgress) {
wait (next);

}

wait(readCountMutex);
numReaders++;
readInProgress = TRUE;
signal(readCountMutex);

//If next on incoming is
//writer will block on next
//If reader will come in
signal(incoming);

do reading

wait(readCountMutex);
numReaders--;
if (numReaders == 0){

readInProgress = FALSE;
if (next.value == 0){

signal (next);
}

}
signal(readCountMutex); -14

Remember

r Game is obtaining highest possible degree of
concurrency and greatest ease of programming

r Tension
m Simple and high granularity locks easy to program
m Simple and high granularity locks often means low

concurrency
r Getting more concurrency means

m Finer granularity locks, more locks
m More complicated rules for concurrent access

-15

Dining-Philosophers Problem
//array of chopsticks, chopstick i is
to the right of philosopher i

semaphore_t
chopstick[NUM_PHILOSOPHERS];

void init(){

for (i=0; i< NUM_PHILOSOPHERS; i++)

chopstick[i].value = 1;

}

-16

Semaphore Solution to Dining
Philosophers
void philosophersLife(int i){

while (1) {
int rightChopstick, leftChopstick;
think();

//figure out which chopsticks I need
rightChopstick = i;
leftChopstick = i-1+ NUM_PHILOSOPHERS % NUM_PHILOSOPERS;

//grab chopsticks
wait(chopstick[rightChopstick])
wait(chopstick[leftChopstick]);

eat();

//putdown chopsticks
signal(chopstick[rightChopstick])
signal(chopstick[leftChopstick]);

}
}

Problem?

philosopher 0 gets chopstick 0
philosopher 1 gets chopstick 1
….
philosopher N gets chopstick N

Deadlock! Solution?

-17

Deadlock

r Deadlock exists in a set of
processes/threads when all
processes/threads in the set are waiting
for an event that can only be caused by
another process in the set (which is also
waiting!).

r Dining Philosophers is a perfect example.
Each holds one chopstick and will wait
forever for the other.

-18

Fixing Dining Philosophers

r Make philosophers grab both chopsticks
they need atomically
m Maybe pass around a token (lock) saying who

can grab chopsticks
m Get a global lock before can lock any chopsticks

r Make a philosopher give up a chopstick
r Others?

4

-19

Resource Allocation Graph

r Deadlock can be described through a
resource allocation graph

r Each node in graph represents a
process/thread or a resource

r An edge from node P to R indicates that
process P had requested resource R

r An edge from node R to node P indicates
that process P holds resource R

r If graph has cycle, deadlock may exist. If
graph has no cycle, deadlock cannot exist.

-20

Cycle in Resource Allocation
Graph

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Chopstick 2

Chopstick 1Chopstick 0

Chopstick 3

wait(chopstick[i])
wait(chopstick[(i-1) % NUM_PHILOSOPHERS])

Cycle: P0, C3, P3, C2, P2,
C1, P1, C0, P0

Philosopher 1 has chopstick 1 and
wants chopstick 0

Philosopher
2 has
chopstick 2
and
wants
chopstick 1

Philosopher 3 has chopstick 3
and wants chopstick 2

Philosopher 0 has
chopstick 0 and wants
chopstick 3

-21

Better Semaphore Solution to
Dining Philosophers
void philosophersLife(int i){

while (1) {
think();
if (rightChopstick < leftChopstick}{

wait(chopstick[rightChopstick]);
wait(chopstick[leftChopstick]);

} else {
wait(chopstick[leftChopstick]);
wait(chopstick[rightChopstick]);

}

eat();

signal(rightChopstick);
signal(leftChopstick);

}
}

Why better?

One philosopher
reaches right first when
all others reach left

Two philsophers reach
for same one and one will
lose; The one who wins
will get both chopsticks
and finish – allowing
everyone to finish
eventually

No circular wait! No
deadlock!!

Always wait for low chopstick first

-22

No Cycle in Resource Allocation
Graph

if (rightChopstick < leftChopstick}{
wait(chopstick[rightChopstick]);
wait(chopstick[leftChopstick]);

} else {
wait(chopstick[leftChopstick]);
wait(chopstick[rightChopstick]);

}

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Chopstick 2

Chopstick 1Chopstick 0

Chopstick 3

No cycle!
No deadlock!

This is not the
only possible
outcome. P1
could get
chopstick 0
first, similarly
P3 could get
chopstick 3
first.
Regardless,
someone will
get both their
chopsticks and
be able to
finish

-23

Conditions for Deadlock

r Deadlock can exist only if the following four
conditions are met;
m Mutual Exclusion – some resource must be held

exclusively
m Hold and Wait – some process must be holding one

resource and waiting for another
m No preemption – resources cannot be preempted
m Circular wait – there must exist a set of processes

(p1,p2, …pn) such that p1 is waiting for p2, p2 is waiting
for p3, … pn is waiting for p1

r All these held in the Dining Philosopher’s first
“solution” we proposed

-24

Deadlock Prevention

r Four necessary and sufficient conditions
for deadlock
m Mutual Exclusion
m Hold and Wait
m No Preemption
m Circular Wait

r Preventing mutual exclusion isn’t very
helpful. If we could allow resources to be
used concurrently then we wouldn’t need
the synchronization anyway!

r Preventing the others?

5

-25

Preventing Hold and Wait

r Do not allow processes to hold a resource when
requesting others
m Make philosophers get both chopsticks at once
m Window’s WaitForMultipleObjects

r Make processes ask for all resources they need at
the beginning
m Disadvantage: May not need all resources the whole time
m Can release them early but must hold until used

r Make processes release any held resources before
requesting more
m Hard to program!

-26

Preventing No Preemption

r Preemption (have to love those double negative ☺)
r Allow system to take back resources once granted

m Make some philosopher give back a chopstick
r Disadvantage: Hard to program

m System figures out how to take away CPU and memory
without breaking programmer’s illusion

m How do you take away access to an open file or a lock
once granted?? Would need API to notify program and
then code to deal with the removal of the resource at
arbitrary points in the code

• Checkpoint and Rollback?

-27

Preventing Circular wait

r Impose an ordering on the possible resources and
require that processes request them in a specific
order

r How did we prevent deadlock in dining
philosophers?
m Numbered the chopsticks
m Made philosophers ask for lowest number chopstick first

r Disadvantage:
m Hard to think of all types of resources in system and

number them consistently for all cooperating processes
m I use a resource X and Y , you use resource Y and Z and

W, someone else uses W, T, R – which is resource 1?
(shared files, databases, chopsticks, locks, events, …)

m For threads in the same process or closely related
processes often isn’t that bad

-28

Prevention vs Avoidance

r Both actually prevent deadlock
m Deadlock Prevention does so by breaking one of the four

necessary conditions
m Deadlock Avoidance allows processes to make any request

they want (not constrained in ways so as to break one of
the four conditions) *as long as* they declare their
maximum possible resource requests at the outset

r Both can deny resource requests that would not
actually lead to deadlock in practice
m Philosophers may never get into deadlock at all even with

no intervention
m Likelihood? How long do they think? How long eat?

-29

Deadlock avoidance

r Say we don’t want to write the code such
that it is impossible to deadlock could still
prevent deadlock by having the system
examine each request and only grant if
deadlock can be avoided

r Processes declare maximum resources they
may ever request at the beginning

r Then during execution, system will only
grant a request if it can ensure that all
processes can run to completion without
deadlock

-30

Grant a resource?

r Consider a set of processes P1, P2, …Pn
which each declare the maximum resources
they might ever request

r When Pi actually requests a resource, the
system will grant the request only if the
system could grant Pi’s maximum resource
requests with the resource currently
available plus the resources held by all the
processes Pj for j < I

r May need P1 to complete then P2 all the
way to Pi but Pi can complete

6

-31

Banker’s Algorithm
r Decide whether to grant resource (loan or invest

money, give a philosopher a chopstick, allow
process to obtain a lock, …)

r Let there be P processes and R resources; Keep
track of
m Number of units of each resource available
m Maximum number of units of each resource that each

process could request
m Current allocation of each resource to each process

r Real bankers cannot return money to everyone at
once
m Have a reserve requirement and rely on federal gov’t to

bail them out (FDIC)
m Play odds on who will return money
m Also bankers typically loan one processes resource to

another; OS starts out owning the resources not
borrowing -32

Banker’s Algorithm

unsigned available[R];
unsigned allocation[P][R];
unsigned maximum[P][R];

startProcess(unsigned p){
for (i=0; i< R; i++){

maximum[p][i] = max number of resource i
that process p will need at one time;
}

}

-33

Banker’s Algorithm
BOOL request(unsigned p, unsigned r){

if (allocation[p][r] + 1 > maximum[p][r]){
//p lied about its max
return FALSE;

}

if (available[p][r] == 0){
//can’t possibly grant; none available
return FALSE;

}

if (canGrantSafely(p, r))
allocation[p][r]++;
available[r]--;
return TRUE;

} else {
return FALSE;

}
}

-34

Banker’s Algorithm
BOOL canGrantSafely(unsigned p, unsigned r){

unsigned free[R];
unsigned canFinish[P];

for (j=0; j< R; j++) free[j] = available[j];
for (i=0; i< P; i++) canFinish[i] = FALSE;

lookAtAll: for (i=0; i< P; i++){
allCanFinish = TRUE;
if (!canFinish[i])

allCanFinish = FALSE;
couldGetAllResources = TRUE;
for (j=0; j< R; j++){

if (maximum[i][j] - allocation[i][j] > free[j]){
couldGetAllResources = FALSE;

}
}
if (couldGetAllResources) {

canFinish[i] = TRUE;
for (i=0; i< R; i++) free[j] += allocation[i][j];

}
}

} //for all processes

if (allCanFinish) {
return TRUE;

}else {
goto lookAtAll;

}
}

-35

Avoidance vs Prevention

r Typically, system does avoidance;
Programmer does prevention

r Deadlock avoidance usually results in
higher resource allocation by allowing more
combinations of resource requests to
proceed than deadlock prevention
m Not always – depends on ratio of processes

maximum resource demands to average
resource demands

-36

If don’t prevent deadlock?

r If don’t prevent deadlock - either deadlock
prevention or deadlock avoidance)- then how will
the system deal with deadlock if (when!) it occurs:

r Two choices
m Enable the system to detect deadlocks and if it does

recover
m Hope they never happen and rely on manual detection and

recovery (“darn my process is hung again..kill process”)

r Dining Philosophers?
m Force a philosopher to put down a chopstick = preemption
m Kill a philosopher? (sounds a bit brutal)
m Kill all philosophers?

7

-37

Deadlock Detection

r If don’t want to ever deny requests when have
resources to grant them, then deadlock may occur

BOOL request(unsigned p, unsigned r){

if(available[p][r] > 0){
allocation[p][r]++;
available[r]--;
return TRUE;

} else {
return FALSE;

}
}

-38

Deadlock Detection Algorithm
BOOL deadlockHasOccured(unsigned p, unsigned r)
{

unsigned work[R];
unsigned canFinish[P];

//initialization
for (j=0; j< R; j++) work[j] = available[j];
for (i=0; i< P; i++){

numResourcesAllocated = 0;
for (j=0; j< R; j++) {

numResourcesAllocated += allocation[i][j];
}
if (numResourcesAllocated == 0){

canFinish [i] = TRUE; //can’t be deadlocked if no hold and
wait

} else {
canFinish [i] = FALSE; //don’t know if this one is

deadlocked
}

}
..

-39

Deadlock Detection Algorithm
tryToFinishOne : for (i=0; i< P; i++){

finishedSomeoneThisTime = FALSE;
allFinished = TRUE;
if (! canFinish[i]){

allFinished = FALSE;
if ((i != p) || (work[r] > 1))) {

canFinish [i] = TRUE;
finishedSomeoneThisTime = TRUE;
for (j=0; j< R; j++) work[j] += allocation[i][j];

}
}

}
if (allFinished){

return FALSE; //no deadlock
} else {

if (! finishedSomeoneThisTime){
return TRUE; //deadlock for pi st canFinish[i] == FALSE

} else {
goto tryToFinishOne;

}
}

} //end deadlockHasOccured -40

Running deadlock detection?

r Unlike with deadlock avoidance algorithm have
choice of when to run

r If run on every resource request approaches
avoidance
m No sense of maximum resource requirement though

r Deciding how often
m How often is deadlock likely to occur?
m How many processes will be affected?
m When CPU utilization drops below X%? (Overall or just

for some processes? What if spin locks?)
m What are signs that it might be good to run deadlock

detection algorithm?

-41

Recovery from Deadlock

r If system detects deadlock, what can it do
to break the deadlock

r What do people do after manual detection?
m Kill a process (es)
m Reboot the system

-42

Recovering from deadlock

r How many?
m Abort all deadlocked processes
m Abort one process at a time until cycle is eliminated (If

one doesn’t resolve deadlock, wait till deadlock detection
algorithm runs again? Specifically run again with
assumption that one of the processes is dead?)

r Which ones?
m Lowest priority with canFinish = FALSE?
m One that has been running the least amount of time (less

work to redo)
m Process that hasn’t been killed before? Anyway to tell?

8

-43

Prevention vs Avoidance vs
Detection
r Spectrum of low resource utilization

m Prevention gives up most chances to allocate resources
m Detection always grants resource if they are available

when requested

r Also spectrum of runtime “overhead”
m Prevention has very little overhead; programmer obeys

rules and at runtime system does little
m Avoidance uses banker’s algorithm (keep max request for

each process and then look before leap)
m Detection algorithm basically involves building the full

resource allocation graph
m Avoidance and detection algorithms both O(R*P2)

-44

Real life?

r Most used prevention technique is resource
ordering – reasonable for programmers to attempt

r Avoidance and Detection to expensive
r Most systems use manual detection and recovery

m My process is hung – kill process
m My machine is locked up – reboot

r Write code that deadlocks and run it on Linux and
on Windows – what happens?

-45

Outtakes

-46

Gridapp

r What would it be like to do deadlock
avoidance/detection for gridapp?

r For avoidance:
m Would have to declare it’s max usage each time

through the loop for a thread or max usage
would be the whole grid and get no
concurrency?

r For detection, that would be be cool

-47

Dining Philosophers Example
monitor diningPhilosophers
{
enum State{thinking, hungry, eating};

State moods[NUM_PHILOSOPHERS];
conditionVariable self[NUM_PHILOSOPHERS];

void pickup(int i);
void putdown(int i) ;
void test(int i) ;
void init() {

for (int i = 0; i < NUM_PHILOSOPHERS; i++)
state[i] = thinking;

}
}

-48

Dining Philosophers
void pickupChopsticks(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdownChopsticks(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+ (NUM_PHILOSOPHERS-1)) %

NUM_PHILOSOPHERS);
test((i+1) % NUM_PHILOSOPHERS);

}

9

-49

Dining Philosophers

void test(int i) {

if ((state[(I + NUM_PHILOSOPHERS -1) %
NUM_PHILOSOPHERS] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % NUM_PHILOSOPHERS] != eating)) {

state[i] = eating;
self[i].signal();

}
}

-50

Dining Philosophers
void philosophersLife(int i) {

while(1){
think();
pickupChopticks();
eat();
putdownChopsicks();

}
}

-51

Semaphore Solution to Readers/
Writers (Writer Preference)
semaphore_t mutex1, mutex2;
semaphore_t writePending, readersBlock, writersBlock;//☺

;
int numReaders, numWriters;

void init{
mutex1.value = 1;
mutex2.value = 1;
writePending.value = 1;
readersBlock.value = 1;
writersBlock.value = 1;
numReaders = 0;
numWriters = 0;

}

-52

Semaphore Solution to Readers/
Writers (Writer Preference)

void writer (){
wait(mutex2);
numWriters++;
if (numWriters ==1){

wait(readersBlock);
}
signal(mutex2);

wait(writersBlock) ;
do the writing
signal(writersBlock);

wait (mutex2);
numWriters --;
if (numWriters == 0){
signal(readersBlock) ;

}
signal(mutex2);

}

void reader (){
wait(writePending) ;
wait (readersBlock);
wait (mutex1);
numReaders ++;
if (numReaders == 1){

wait(writersBlock);
}
signal(mutex1);

signal(readersBlock);
signal(writePending);

do reading

wait (mutex1);
numReaders --;
if (numReaders ==0){
signal(writersBlock) ;

}
signal(mutex1);

}

First writer waits in line with the readers;
Other writers wait with writers

-53

Other Classic Synchronization
Problems
r Sleepy Barber
r Traffic lights for two lane road through a

one lane tunnel (McNutt ch8 + 9)

