
1

-1

7: Synchronization

Last Modified:
6/7/2004 1:21:28 PM

-2

Last time

r Need for synchronization primitives
r Locks and building locks from HW

primitives
r Semaphores and building semaphores from

locks

-3

Uses of Semaphores

r Mutual exclusion
m Binary semaphores (wait/signal used just like

lock/unlock)
m “hold”

r Managing N copies of a resource
m Counting semaphores
m “enter”

r Anything else?
m Another type of synchronization is to express

ordering/scheduling constraints
m “Don’t allow x to proceed until after y”

-4

Semaphores for expressing ordering

r Initialize semaphore value to 0
r Code:

Pi Pj

Μ Μ
A wait

signal B
r Execute B in Pj only after A executed in Pi
r Note: If signal executes first, wait will

find it is an signaled state (history!)

-5

Events and Signals

r Recall: UNIX signals
m Kill = send signal; Signal = catch signal
m Many system defined but also signals left to user

definition
m Can be used for synchronization

• Signal handler sets a flag
• Main thread polls on the value of the flag
• Busy wait though

r Window’s Events
m Synchronization objects used somewhat like semaphores

when they are used for ordering/scheduling constraints
m One process/thread can wait for an event to be signaled

by another process/thread

-6

Window’s Events

q Create/destroy
HANDLE CreateEvent(

LPSECURITY_ATTRIBUTES lpsa, // security privileges (default = NULL)
BOOL bManualReset , // TRUE if event must be reset manually
BOOL bInitialState, // TRUE to create event in signaled state
LPTSTR lpszEventName); // name of event (may be NULL)

BOOL CloseHandle(hObject);

q Wait
DWORD WaitForSingleObject(

HANDLE hObject, // object to wait for
DWORD dwMilliseconds);

q Signal (all threads that wait on it receive)
BOOL SetEvent (HANDLE hEvent); //signal on

BOOL ResetEvent (HANDLE hEvent); //signal off

2

-7

Generalize to Messaging

r Synchronization based on data transfer
(atomic) across a channel

r In general, messages can be used to
express ordering/scheduling constraints
m Wait for message before do X
m Send message = signal

r Direct extension to distributed systems

-8

Compiler help?

r There is no syntactic connection between
the semaphore (or lock or event) and the
shared data/resources it is protecting

r Thus the “meaning” of the semaphore is
defined by the programmer’s use of it
m Bad software engineering

• Semaphores basically global variables accessed by all
threads

m Easy for programmers to make mistakes

-9

Programming Language Support

r Add programming language support for
synchronization
m Declare a section of code to require mutually

exclusive access (like Java’s synchronized)
m Associate the shared data itself with the

locking automatically
r Monitor = programming language support to

enforce synchronization
m Mutual exclusion code added by the compiler!

-10

Monitors

r A monitor is a software module that
encapsulates:
m Shared data structures
m Procedures that operated on them
m Synchronization required of processes that

invoke these procedures
r Like a public/private data interface

prevents access to private data members;
Monitors prevent unsynchronized access to
shared data structures

-11

Example: bankAccount
Monitor bankAccount{

int balance;

int readBalance(){return balance};
void upateBalance(int newBalance){

balance = newBalance;
}
int withdraw (int amount) {

balance = balance – amount;
return balance;

}
int deposit (int amount){

balance = balance + amount;
return balance;

}
}

Locking added
by the compiler!

-12

Monitor

S

balance

readBalance
updateBalance

withdraw

deposit

Shared data

Procedures
Waiting queue

One thread
In Monitor

3

-13

Waiting Inside a Monitors

r What if you need to wait for an event within one
of the procedures of a monitor?

r Monitors as we have seen to this point enforce
mutual exclusion – what about the

r Introduce another synchronization object, the
condition variable

r Within the monitor declare a condition variable:
condition x;

-14

Wait and signal

r Condition variables, like semaphores, have
the two operations have the two
operations, wait and signal.
m The operation x.wait() means that the process

invoking this operation is suspended until
another process invokes x.signal();

m The operation wait allows another process to
enter the monitor (or no one could ever call
signal!)

m The x.signal operation resumes exactly one
suspended process. If no process is suspended,
then the signal operation has no effect

-15

Monitor With Condition
Variables

S

balance

readBalance
updateBalance

withdraw

deposit

Waiting queue

One thread
Running in
Monitor

Condition Variables
and their associated
wait queues

-16

Semaphores vs Condition
Variables
r I’d like to be able to say that condition

variables are just like semaphores but …
r With condition variables, if no process is

suspended then the signal operation has no
effect

r With semaphores, signal increments the
value regardless of whether any process is
waiting

r Semaphores have “history” (they
remember signals) while condition variables
have no history

-17

Condition Variable Alone?

r Could you use a condition variable concept
outside of monitors?

r Yes, basically a semaphore without history
m Couldn’t do locking with it because no mutual

exclusion on its own
m Couldn’t do resource management (counting

semaphore) because no value/history
m Could you use it for ordering/scheduling

constraints? Yes but with different semantics

-18

Condition Variables for
ordering/scheduling

r Code:
Pi Pj

Μ Μ
A wait

signal B
r Execute B in Pj only after A executed in Pi
r If signal first, it is lost; wait will block

until next signal (no history!)

4

-19

Pseudo-Monitors

r Monitor = a lock (implied/added by
compiler) for mutual exclusion PLUS zero
or more condition variables to express
ordering constraints

r What if we wanted to have monitor without
programming language support?
m Declare locks and then associate condition

variables with a lock
m If wait on the condition variable, then release

the lock

-20

Pthread’s Condition Variables

q Create/destroy
int pthread _cond _init (pthread_cond_t *cond, pthread _condattr_t *attr);
int pthread _cond _destroy (pthread _cond _t *cond);

q Wait
int pthread _cond _wait (pthread_cond_t *cond, pthread _mutex_t *mut);

q Timed Wait
int pthread _cond _timedwait (pthread _cond _t *cond, pthread_mutex_t *mut , const

struct timespec *abstime);

q Signal
int pthread _cond _signal (pthread _cond_t *cond);

q Broadcast
int pthread _cond _broadcast (pthread _cond_t *cond);

-21

Example: Pseudo-monitors
pthread_mutex _t monitorLock;
pthread_cond_t conditionVar;

void pseudoMonitorProc(void)
{

pthread_mutex _lock(&mutexLock);
…..

pthread_cond_wait(&conditionVar, &monitorLock);
….

pthread_mutex _unlock(&mutexLock);
}

-22

Monitor Invariants

r Monitor invariants = rules that must hold
whenever no thread is in the monitor

r Not checked by compiler
r More like pre/post conditions to be

respected by the programmer

-23

Who first?

r If thread in Monitor calls x.signal waking
another thread then who is running in the
monitor now? (Can’t both be running in the
monitor!)

r Hoare monitors
m Signalee runs; signaler blocks
m Signaler put on monitor queue

r Mesa monitors
m Signaler continues; signalee blocks
m Signalee moved from condition variable queue

to monitor queue

-24

Does it matter? Yes

r If signalee runs immediately, then clearly
“condition” being signaled still holds
m Signaler must restore any “monitor invariants”

before signaling
r If signalee runs later, then when it finally

does enter the monitor it must recheck
condition before executing
m Signaler need not restore any “monitor

invariants” before signaling – just before
exiting

5

-25

Write different code as a
result
r If waiter runs immediately then

if (condition not true)
C.wait()

r If waiter runs later then
while (condition not true)

C.wait()

r Conclusion?
m Mesa style (waiter runs later) has fewer

context switches and directly supports a
broadcast primitive (I.e. c.signalAll)

m While instead of if not a big price to pay

-26

Semaphores vs Monitors

r If have one you can implement the other…

-27

Implementing Semaphores
With Monitors
Monitor semaphore {

int value;
conditionVariable _t waitQueue ;

void setValue (int value){
value = newValue;

}

int getValue(){return value;}

void wait(){
value --;
while (value < 0){

//Notice Mesa
semantics

condWait(&waitQueue);
}

}

void signal (){
value++;
condSignal(&waitQueue);

}

} //end monitor semaphore

-28

Implementing Monitors with
Semaphores
semaphore_t mutex , next;
int nextCount = 1;

Initialization code:

mutex .value = 1;
next.value = 0;

For each procedure P in Monitor,
implement P as

Wait (mutex);
unsynchronizedBodyOfP ();
if (nextCount >0){

signal(next);
}else {

signal(mutex) ;
}

conditionVariable_t {
int count;
semaphore_t sem;

}
condWait (conditionVariable_t *x) {

//one more waiting on this cond
x->count = x_count++;
//wake up someone
if (nextCount > 0){

signal(next);
}else {

signal (mutex);
}
wait(x->sem);
x->count = x->count--;

}
condSignal(conditionVariable_t *x){

//if no one waiting do nothing!
if (x->count > 0){

next_count = nextCount++;
signal(x->sem);
wait (next);
nextCount--;

}
}

-29

Software Synchronization
Primitives Summary
r Locks

• Simple semantics, often close to HW primitives
• If built without a queue can get busy waiting

r Semaphores
• Value for history and queue to avoid busy waiting
• Primitives not as intuitive as lock/unlock

r Events/Messages
• Intuitive primitives (flag/wait for event, send/wait for

message)
• Easily extended to distributed systems

r Monitors
• Language constructs that automate the locking
• Easy to program with where supported and where model fits

the task
• Re-introduce much of the complexity with cv and monitor

invariants -30

Conclusion?

r Synchronization primitives all boil down to
representing a large amount of shared
state (time and/or space) with a small
amount of shared state (time and space)

r All need to be built on top of HW support
r Once have one kind, can usually get to

other kinds
r Which one you use is a matter of

programmatic simplicity (matching
primitive to the problem) and taste

6

-31

Next time

r Classic synchronization problems and their
solutions
m Bounded Buffer
m Readers/Writers
m Dining Philosophers

-32

Outtakes

-33

Adaptive Locking in Solaris

r Adaptive mutexes
m Multiprocessor system if can’t get lock

• And thread with lock is not running, then sleep
• And thread with lock is running, spin wait

m Uniprocessor if can’t get lock
• Immediately sleep (no hope for lock to be released while

you are running)
r Programmers choose adaptive mutexes for short

code segments and semaphores or condition
variables for longer ones

r Blocked threads placed on separate queue for
desired object
m Thread to gain access next chosen by priority and

priority inversion is implemented

