
1

-1

5: CPU Scheduling

Last Modified: 
6/2/2004 3:01:20 PM

-2

Scheduling Policy

rWe’ve talked about the context switch 
mechanism
m How we change which process or thread is 

executing on the CPU
r Today, we will talk about scheduling policies
m How do we choose which process or thread to 

execute next
m Unit of scheduling = process or thread

-3

Scheduler

r Scheduler = the module that moves jobs 
from queue to queue

r Scheduler typically runs when:
m A timer interrupt occurs
m A process/thread blocks on a request 

(transitions from running to waiting)
m A new process/thread is created or is 

terminated

-4

Scheduling Algorithm

r The scheduling algorithm examines the set of 
candidate processes/threads and chooses one to 
execute

r Scheduling algorithms can have different goals
m Maximize CPU utilization
m Maximize throughput (#jobs/time)
m Minimize average turnaround time 

( Avg(EndTime – StartTime) )
m Minimize response time

r Recall: Batch systems have which goal? Interative 
systems have which goal?

-5

Starvation

r Starvation = process is prevented from 
making progress towards completion 
because another process has a resource 
that it needs

r Scheduling policies should try to prevent 
starvation
m E.g. Even low priority processes should 

eventually get some time on the CPU

-6

Brainstorm

rWhat are some different ways to schedule 
access to a resource?
m First Come First Serve

• Many services humans use are like this? 
m Prefer Short Jobs

• Express lane at the grocery store

m Important Jobs First
• Order you do your TODO list? Maybe round robin?

r Now what about scheduling processes?



2

-7

Process Model
r Think of a process/ 

thread as an entity that 
alternates between two 
states: using the CPU and 
waiting for I/O (not a 
bad model)

r Most “CPU bursts” are 
short

-8

First Come First Serve (FCFS)

r Also called First In First Out (FIFO)
r Jobs scheduled in the order they arrive
rWhen used, tends to be non-preemptive
m If you get there first, you get all the resource 

until you are done
m “Done” can mean end of CPU burst or 

completion of job
r Sounds fair
m All jobs treated equally
m No starvation (except for infinite loops that 

prevent completion of a job)

-9

Problems with FCFS/FIFO

r Can lead to poor overlap of I/O and CPU
m If let first in line run till they are done or block 

for I/O then can get convoy effect
mWhile job with long CPU burst executes, other 

jobs complete their I/O and the I/O devices 
sit idle even though they are the “bottleneck” 
resource and should be kept as busy as possible

r Also, small jobs wait behind long running 
jobs (even grocery stores know that)
m Results in high average turn-around time

-10

Shortest Job First (SJF)

r So if we don’t want short running jobs 
waiting behind long running jobs, why don’t 
we let the job with the shortest CPU burst 
go next 
m Can prove that this results in the minimum 

(optimal) average waiting time
r Can be preemptive or non-preemptive
m Preemptive one called shortest-remaining-time 

first

-11

Problems with SJF

r First, how do you know which job will have 
the shortest CPU burst or shortest running 
time?
m Can guess based on history but not guaranteed

r Bigger problem is that it can lead to 
starvation for long-running jobs
m If you never got to the head of the grocery 

queue because someone with a few items was 
always cutting in front of you

-12

Most Important Job First

r Priority scheduling
m Assign priorities to jobs and run the job with 

the highest priority next
m Can be preemptive such that as soon as high 

priority job arrives it get the CPU
r Can implement with multiple “priority 

queues” instead of single ready queue
m Run all jobs on highest priority queue first



3

-13

Problems with Priority 
Scheduling
r First, how do we decide on priorities?
m SJF is basically priority scheduling where 

priority determined by running time – also a 
million other choices

r Like SJF, all priority scheduling can lead to 
starvation

r How do we schedule CPU between 
processes with the same priority?

rWhat if highest priority process needs 
resource held by lowest priority process?

-14

Priority Inversion

r Problem: Lowest priority process holds a 
lock that highest priority process needs. 
Medium priority processes run and low 
priority process never gets a chance to 
release lock.

r Solution: Low priority process “inherits” 
priority of the highest priority process 
until it releases the lock and then reverts 
to original priority.

-15

Dealing with Starvation

r FCFS has some serious drawbacks and we 
really do like to be able to express 
priorities 

rWhat can we do to prevent starvation?
m Increase priority the longer a job waits
m Eventually any job will accumulate enough 

“waiting points” to be scheduled

-16

Interactive Systems?

r Do any of these sound like a good choice 
for an interactive system?

r How did we describe scheduling on 
interactive systems?
m Time slices
m Each job given a its share of the CPU in turn
m Called Round Robin (RR) scheduling

r No starvation!

-17

Problems With RR

r First, how do you choose the time 
quantum?
m If too small, then spend all your time context 

switching and very little time making progress
m If too large, then it will be a while between the 

times a given job is scheduled leading to poor 
response time

m RR with large time slice => FIFO
r No way to express priorities of jobs
m Aren’t there some jobs that should get a longer 

time slice?

-18

Best of All Worlds?

r Most real life scheduling algorithms combine 
elements of several of these basic schemes

r Examples:
m Have multiple queues
m Use different algorithms within different queues
m Use different algorithm between queues
m Have algorithms for moving jobs from one queue to 

another
m Have different time slices for each queue
m Where do new jobs enter the system



4

-19

Multi-level Feedback Queues 
(MLFQ)
r Multiple queues representing different 

types of jobs
m Example: I/O bound, CPU bound
mQueues have different priorities

r Jobs can move between queues based on 
execution history

r If any job can be guaranteed to eventually 
reach the top priority queue given enough 
waiting time, them MLFQ is starvation free

-20

Typical UNIX Scheduler

r Processes with highest priority always run 
first; Processes of same priority scheduled 
with Round Robin

r Reward interactive behavior by increasing 
priority if process blocks before end of 
time slice granted

r Punish CPU hogs by decreasing priority of 
processes that use the entire quantum

-21

priocntl
> priocntl -l
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)

Configured TS User Priority Range: -60 through 60

IA (Interactive)
Configured IA User Priority Range: -60 through 60

RT (Real Time)
Maximum Configured RT Priority: 59

-22

priocntl
:~> ps

PID TTY      TIME CMD
29373 pts/60   0:00 tcsh
29437 pts/60   0:11 pine

:~> priocntl -d 29373
TIME SHARING PROCESSES:

PID    TSUPRILIM    TSUPRI
29373      -30         -30

:~> priocntl -d 29437
TIME SHARING PROCESSES:

PID    TSUPRILIM    TSUPRI
29437      -57         -57

:~> priocntl -d 1
TIME SHARING PROCESSES:

PID    TSUPRILIM    TSUPRI
1        0           0

-23

nice

r Users can lower the priority of their 
process with nice

r Root user can raise or lower the priority of 
processes

-24

Some Special Cases



5

-25

Real Time Scheduling

r Real time processes have timing constraints
m Expressed as deadlines or rate requirements

r Common Real Time Scheduling Algorithms
m Rate Monotonic

• Priority = 1/RequiredRate
• Things that need to be scheduled more often have highest 

priority
m Earliest Deadline First

• Schedule the job with the earliest deadline
• Scheduling homework? ☺

r To provide service guarantees, neither algorithm 
is sufficient
m Need admission control so that system can refuse to 

accept a job if it cannot honor its constraints

-26

Multiprocessor Scheduling

r Can either schedule each processor 
separately or together
m One line all feeding multiple tellers or one line 

for each teller
r Some issues
mWant to schedule the same process again on 

the same processor (processor affinity)
• Why? Caches

mWant to schedule cooperating 
processes/threads together (gang scheduling)

• Why? Don’t block when need to communicate with 
each other

-27

Algorithm Evaluation: 
Deterministic Modeling
r Deterministic Modeling
m Specifies algorithm *and* workload

r Example :
m Process 1 arrives at time 1 and has a running 

time of 10 and a priority of 2
m Process 2 arrives at time 5, has a running time 

of 2 and a priority of 1
m …
mWhat is the average waiting time if we use 

preemptive priority scheduling  with FIFO 
among processes of the same priority?

-28

Algorithm Evaluation: Queueing 
Models
r Distribution of CPU and I/O bursts, arrival 

times, service times are all modeled as a 
probability distribution

r Mathematical analysis of these systems
r To make analysis tractable, model as well 

behaved but unrealistic distributions 

-29

Algorithm Evaluation: 
Simulation
r Implement a scheduler as a user process
r Drive scheduler with a workload that is 

either 
m randomly chosen according to some distribution
m measured on a real system and replayed 

r Simulations can be just as complex as 
actual implementations
m At some level of effort, should just implement 

in real system and test with “real” workloads 
mWhat is your benchmark/ common case?

-30

One last point: Kernel vs User 
Level Threads
r Recall: With kernel level threads, kernel 

chooses among all possible threads to 
schedule; with user level threads, kernel 
schedules the process and the user level 
thread package schedule the threads

r User-level threads have benefit of fast 
context switch at user level

r Kernel-level threads have benefit of global 
knowledge of scheduling choices and has 
more flexibility in assigning priorities to 
individual threads



6

-31

Outakes

rWindows 2000 priority classes
r Linux source code: kernel/sched.c
m How to find
m How to read online


