
1

-1

3: Processes

Last Modified:
6/1/2004 11:53:05 AM

-2

Programs vs Processes

r A program is passive
m Sequence of commands waiting to be run

r A process is active
m An instance of program being executed
m There may be many processes running the same

program
m Also called job or task

-3

What makes up a process?

r Address space
r Code
r Data
r Stack (nesting of procedure calls made)
r Register values (including the PC)
r Resources allocated to the process
mMemory, open files, network connections

-4

Address Space Map
Stack

(Space for local variables etc.
For each nested procedure call)

Heap
(Space for memory dynamically

allocated e.g. with malloc)

Statically declared variables
(Global variables)

Code
(Text Segment)

Stack Pointer

PC

Ox0000

Biggest
Virtual
Address

Sometimes
Reserved for
OS

Sometimes
Reserved for
Error Catching

-5

What kinds of processes are
there?
r Compute bound/ IO bound
r Long-running/short-running
r Interactive/batch
r Large/small memory footprint
r Cooperating with other processes?
r …
r How does the OS categorize processes?

-6

Process States

r During their lifetime, processes move
between various states
m Ready – waiting for a turn to use the CPU
m Running – currently executing on the CPU

• How many processes can be in this state? ☺

mWaiting – Unable to use the CPU because
blocked waiting for an event

m Terminated/Zombie – Finished executing but
state maintained until parent process retrieves
state

2

-7

State Transitions

New Ready Running Terminated

Waiting

Schedule/unschedule

Request Resource
or Service

Grant Resource

-8

State Queues

r OSes often maintain a number of queues of
processes that represent the state of the
processes
m All the runnable processes are linked together

into one queue
m All the processes blocked (or perhaps blocked

for a particular class of event) are linked
together

m As a process changes state, it is unlinked from
one queue and linked into another

-9

Context Switch

rWhen a process is running, some of its
state is stored directly in the CPU
(register values, etc.)

rWhen the OS stops a process, it must save
all of this hardware state somewhere (PCB)
so that it can be restored again

r The act of saving one processes hardware
state and restoring another’s is called a
context switch
m 100s or 1000s per second!

-10

Context Switch

-11

Schedulers

r Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue.

r Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU.

-12

Schedulers (cont)

r Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast).

r Long-term scheduler is invoked very infrequently
(seconds, minutes) ⇒ (may be slow).

r The long-term scheduler controls the degree of
multiprogramming.

r Processes can be described as either:
m I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.
m CPU-bound process – spends more time doing

computations; few very long CPU bursts.

3

-13

Family Tree

r Age old questions – where do new processes come
from?

r New processes are created when an existing
process requests it
m Creating process called the parent; created called the

child
m Children of same parent called siblings

r Children often inherit privileges/attributes from
their parent
m Working directory, Clone of address space

r When child is created, parent may either wait for
it or continue in parallel

-14

pstree
init-+-18*[Xvnc]

|-amd
|-atd
|-bdflush
|-crond
|-16*[deskguide_apple]
|-8*[gconfd-1]
|-gedit
|-18*[gnome-name-serv]
|-16*[gnome-session]
|-16*[gnome-smproxy]
|-gnome-terminal-+-csh---gtop
| `-gnome-pty-helpe
|-gnome-terminal-+-csh-+-gtop
| | `-tcsh
| `-gnome-pty-helpe
|-gnome-terminal-+-csh---tcsh---

xterm---csh
| `-gnome-pty-helpe
|-gpm
|-8*[hyperbola]
|-keventd
|-khubd
|-5*[kjournald]
|-klogd
|-ksoftirqd_CPU0
|-ksoftirqd_CPU1
|-kswapd
|-kupdated
|-lockd

init-+-18*[Xvnc]
|-16*[magicdev]
|-mdrecoveryd
|-migration_CPU0
|-migration_CPU1
|-6*[mingetty]
|-2*[nautilus---nautilus---8*[nautilus]]
|-2*[nautilus---nautilus---10*[nautilus]]
|-3*[nautilus---nautilus---9*[nautilus]]
|-nautilus---nautilus---7*[nautilus]
|-7*[nautilus-histor]
|-nautilus-mozill---nautilus-mozill---4*[nautilus-

mozill]
|-8*[nautilus-news]
|-8*[nautilus-notes]
|-7*[nautilus-throbb]
|-ntpd
|-13*[oafd]
|-16*[panel]
|-portmap
|-16*[rhn-applet]
|-rhn-applet---gnome_segv
|-rhnsd
|-rpc.statd
|-rpciod
|-14*[sawfish]
|-2*[sawfish---rep]
|-scsi_eh_0
|-scsi_eh_1
|-sendmail

init-+-18*[Xvnc]
|-sshd-+-2*[sshd--- csh--- mc]
| | -sshd---csh
| | -sshd---csh-+-more
| | `-netstat

| -̀sshd---csh ---pstree
|-syslogd
|-16*[tasklist_applet]
|-xemacs
|-xfs---xfs
|-xinetd---fam
|-xscreensaver---greynetic
|-xscreensaver---hopalong
|-2*[xscreensaver---xscreensaver]
|-xscreensaver---kumppa
|-xscreensaver---spotlight
|-xscreensaver---spiral
|-xscreensaver---nerverot
|-xscreensaver---strange
|-xscreensaver---flame
|-xscreensaver---grav
|-xscreensaver---lightning
|-xscreensaver---penetrate
|-xscreensaver---rotzoomer---xscreensaver-ge
|-xscreensaver---deluxe
|-xscreensaver---rd-bomb
|-xscreensaver---sonar
|-xscreensaver---moire2
`-ypbind---ypbind---2*[ypbind

-15

Init process

r In last stage of boot process, kernel creates a
user level process, init

r Init is the parent (or grandparent…) of all other
processes

r Init does various important housecleaning
activities
m checks and mounts the filesystems, sets hostname,

timezones, etc.
r Init reads various “resource configuration files”

(/etc/rc.conf, etc) and spawns off processes to
provide various services

r In multi-user mode, init maintains processes for
each terminal port (tty)
m Usually runs getty which executes the login program

-16

How is a process represented?

r Usually a process or task object
r Process Control Block
rWhen not running how does the OS

remember everything needed to start this
job running again
m Registers, Statistics, Working directory, Open

files, User who owns process, Timers, Parent
Process and sibling process ids

r In Linux, task_struct defined in
include/linux/sched.h

-17

struct task_struct {
/* these are hardcoded- don't touch */
volatile long state; /* - 1 unrunnable, 0runnable, >0

stopped */
long counter;
long priority;
unsigned long signal;
unsigned long blocked; /* bitmap of masked signals

*/
unsigned long flags; /* per process flags, defined

below */
int errno;
long debugreg[8]; /* Hardware debugging registers

*/
struct exec_domain *exec_domain; /* various fields

*/
struct linux_binfmt*binfmt;
struct task_struct *next_task, * prev_task;
struct task_struct *next_run, * prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;
int exit_code, exit_signal; /* ??? */
unsigned long personality;
int dumpable :1;
int did_exec:1; /* shouldn't this be pid _t? */
int pid;
int pgrp; int tty_old_pgrp;
int session; /* boolean value for session group

leader */
int leader; int groups[NGROUPS];
/* * pointers to (original) parent process, youngest

child, younger sibling, * older sibling,
respectively. (p ->father can be replaced with * p-

>p_pptr ->pid) */
struct task_struct *p_opptr, *p_ pptr, *p_cptr,

*p_ysptr, *p_osptr;
struct wait_queue *wait_chldexit; /* for wait4() */
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
unsigned long timeout, policy, rt_priority;
unsigned long it_real_value, it_prof_value,

it_virt_value;
unsigned long it_real_incr, it_prof_incr, i t_virt_incr;
struct timer_list real_timer;

long utime, stime, cutime, cstime, start_time;
/* mm fault and swap info: this can arguably be

seen as either mm-specific or thread -specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt,

cmaj_flt, cnswap;
int swappable:1;
unsigned long swap_address;
unsigned long old_maj_ flt; /* old value of maj_flt */
unsigned long dec_flt; /* page fault count of the last

time */
unsigned long swap_cnt; /* number of pages to

swap on next pass */

/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count;
struct tty_struct * tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo * semundo; struct sem_queue

*semsleeping;
/* ldt for this task - used by Wine. If NULL,

default_ldt is used */
struct desc_struct * ldt;
/* tss for this task */
struct thread_struct tss;
/* filesystem information */
struct fs_struct * fs;
/* open file information */
struct files_struct *files;
/* memory management info */
struct mm_struct *mm;
/* signal handlers */
struct signal_struct *sig;
#ifdef __SMP__

int processor;
int last_processor;
int lock_depth; /* Lock depth. We

can context switch in and out of holding asyscall kernel lock... */
#endif }; -18

Management of PCBs

r PCBs are data structures (just like you are used to
at user level)

r Space for them may be dynamically allocated as
needed or perhaps a fixed sized array of PCBs for
the maximum number of possible processes is
allocated at init time

r As process is created, a PCB is assigned and
initialized for it
m Often process id is an offset into an array of PCBs

r After process terminates, PCB is freed
(sometimes kept around for parent to retrieve its
exit status)

4

-19

State Queues

Tail ptr
Head ptr

Prev
next

Rest of PCB

Prev
next

Rest of PCB

Prev
next

Rest of PCB

Ready queue, queues per device, queue of all processes, …

-20

Context Switch

r When a process is running, some of its state is
stored directly in the CPU (register values, etc.)

r When the OS stops a process, it must save all of
this hardware state somewhere (PCB) so that it
can be restored again

r The act of saving one processes hardware state
and restoring another’s is called a context switch
m 100s or 1000s per second!

-21

UNIX process creation

r Fork() system call
m Creates a new PCB and a new address space
m Initializes the new address space with a *copy*

of the parent’s address space
m Initializes many other resources to copies of

the parents (e.g. same open files)
m Places new process on the queue of runnable

processes
r Fork() returns twice: to parent and child
m Returns child’s process ID to the parent
m Returns 0 to the child

-22

Example Code Snippet

int main (int argc, char **argv)
{

int childPid;
childPid = fork();
if (childPid == 0){

printf(“Child running\n”);
} else {

printf(“Parent running: my child is %d\n”,
childPid);

}
}

-23

Output

%./tryfork
Parent running: my child is 707
Child running
%

-24

Experiments

r Try putting an infinite loop in the child’s portion (
do you return to the command shell?) and then
looking for it in the ps output

r Try putting an infinite loop in the parent’s portion
(do you return to the command shell?)

r Put an infinite loop in both
m try killing the child (look in the ps output for the child

and the parent)
m Try killing the parent – what happens to the child?

r WARNING: DO NOT PUT THE FORK COMMAND
ITSELF IN AN INFINITE LOOP!!! YOU WILL
CRASH THE SYSTEM!

5

-25

Fork and Exec

r How do we get a brand new process not just a copy
of the parent?
m Exec () system call
m int exec (char * prog, char ** argv)

r Exec:
m Stops the current process
m Loads the program, prog, into the address space
m Passes the arguments specified in argv
m Places the PCB back on the ready queue

r Exec “takes over” the process
m There is no going back to it when it returns
m Try to exec something in your shell (example: exec ls) –

when ls is done your shell is gone because ls replaced it!

-26

UNIX Shell
int main (int argc, char **argv)
{

while (1){
int childPid;
char * cmdLine = readCommandLine();

if (userChooseExit(cmdLine)){
wait for all background jobs

}

childPid = fork();
if (childPid == 0){

setSTDOUT _STDIN_STDERR(cmdLine);
exec (getCommand (cmdLine));

} else {
if (runInForeground(cmdLine)){

wait (childPid);
}

}
}

-27

Windows Process Creation

BOOL CreateProcess(
LPCTSTR lpApplicationName , // name of executable
module LPTSTR lpCommandLine, // command line string
LPSECURITY_ATTRIBUTES lpProcessAttributes, // SD
LPSECURITY_ATTRIBUTES lpThreadAttributes, // SD
BOOL bInheritHandles , // handle inheritance option
DWORD dwCreationFlags, // creation flags
LPVOID lpEnvironment, // new environment block
LPCTSTR lpCurrentDirectory, // current directory name
LPSTARTUPINFO lpStartupInfo, // startup information
LPPROCESS_INFORMATION lpProcessInformation //
process information);

-28

Windows vs Unix

qWindows doesn’t maintain the same
relationship between parent and child
q Later versions of Windows have concept of

“job” to mirror UNIX notion of parent and
children (process groups)

qWaiting for a process to complete?
q WaitforSingleObject to wait for completion
q GetExitCodeProcess (will return STILL_ALIVE

until process has terminated)

-29

Cooperating Processes

r Processes can run independently of each other or
processes can coordinate their activities with
other processes

r To cooperate, processes must use OS facilities to
communicate
m One example: parent process waits for child
m Many others

• Shared Memory
• Files
• Sockets
• Pipes
• Signals
• Events
• Remote Procedure Call

-30

Sockets

r A socket is an end-point for communication
over the network

r Create a socket
m int socket(int domain, int type, int
protocol)

m Type = SOCK_STREAM for TCP
r Read and write socket just like files
r Can be used for communication between

two processes on same machine or over the
network

6

-31

Pipes

r Bi-directional data channel between two
processes on the same machine

r Created with:
m int pipe (int fildes[2])

r Read and write like files

-32

Signals

r Processes can register to handle signals with the
signal function
m void signal (int signum, void (*proc) (int))

r Processes can send signals with the kill function
m kill (pid, signum)

r System defined signals like SIGHUP (0), SIGKILL
(9), SIGSEGV(11)
m In UNIX shell, try:

“kill –9 pidOfProcessYouDon’tReallyCareAbout”
r Signals not used by system like SIGUSR1 and

SIGUSR2
r Note: sigsend/sigaction similar to kill/signal

-33

Remote Procedure Call (RPC)

-34

Processes

rWhat is a process?
r Process States
r Switching Between Processes
r Process Creation
r PCBs
r Communication/Cooperation between

processes

-35

Outtakes

r Could spend more time on things in Process
Creation and Signal chapter of Stevens

