
1

-1

2:
Architectural Underpinnings
and Application Requirements

1/11/2004 8:59 PM

-2

OS Layer

r Remember OS is a layer between the underlying
hardware and application demands

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware

-3

Raw Materials

rWhat does the OS have to work to provide
an efficient, fair, convenient, secure
computing platform?

r Raw hardware
m CPU architecture (instruction sets, registers,

busses, caches, DMA controllers, etc.)
m Peripherals (CD-ROMs, disk drives, network

interfaces, etc.)

-4

Computer System Architecture

ALU

Control

-5

CPU

r Registers
• Local storage or scratch space

r Arthimetic logic unit (ALU)
• Addition, multiplication, etc (integer and/or floating point)
• Logical operations like testing for equality or 0
• Operations performed by loading values into registers from

memory, operating on the values in the registers, then
saving register values back to memory

r Control unit
• Cause a sequence of instructions, stored in memory to be

retrieved and executed
• Fetch instruction from memory, decode instruction, signal

functional units to carry out tasks
• PC = program counter contains memory address of

instruction being processed
• IR – instruction register – copy of the current instruction

-6

Bus and Memory

r Bus
m Address lines, data lines, some lines for arbitration
m Internal communication pathway between CPU, memory

and device controllers
m Sometimes one system bus; sometimes separate memory

bus and I/O bus

r Memory
m Both data and instructions must be loaded from memory

into the CPU in order to be executed
m To access memory, address placed in memory address

register and command register written
m Range of memory addresses? Size of data register?

Determined by memory technology

2

-7

Devices

r Device controllers
m Small processing units that connect a device to the

system bus
m Registers that can be read/written by CPU

• command register (what to do), status register (is the
device busy? Has the device completed a request?) , data
register to store data bring written to the device or read
from the device

r Device drivers
m Software to hide the complexities of the device

controller interface behind a higher level logical API
m Example: read lba 10 instead vs. write command value

0x30 to command register, address 10 to address
register,…

-8

Better Raw Material?

r The “better” the underlying hardware, the
better computing experience the OS can
expose

r Certainly the faster the CPU, the more
memory, etc. the better experience the
OS can expose to applications

r Also there are some features that the
hardware can provide to make the OS’s job
much easier

r Lets see if we can guess some…

-9

Enforcing Protection

r If we want the operating system to be able
to enforce protection and policies on all
user processes, what can give the OS the
power to do that?
m Protected Instructions
m Deny applications direct access to the hardware
m Protected Mode of Execution (user vs kernel)
mMemory protection hardware

-10

Protected Instructions

r If you would look over the assembly language for a
computer, you may notice that some instructions
look pretty dangerous
m Should any application be allowed to directly execute the

halt instruction? Denial of service attack?
m Should any application be allowed to directly access I/O

devices? Read any ones files from disk?
r Hardware can help OS by designating some

instructions as protected instructions that only
the OS can issue

r How can the hardware tell whether it is OS
(kernel) code or user code?

-11

Protected Mode

r In addition to designating certain instructions as
protected instructions, the hardware would need
to be able to distinguish the OS from user apps

r Most architectures have a “mode” value in a
protected register
m When user applications execute, the mode value is set to

one thing
m When the OS kernel executes, the mode value set to

something else
m If code running in user mode, an attempt to execute

protected instructions will generate an exception
m Switching the mode value must of course be protected

r Some architectures support more protection
modes than just user/kernel

-12

Switching Modes

r So how do we switch between an OS
running in kernel mode and an application
running in user mode?
m OS could set the mode bit to a different mode

before allowing the application to run on the
CPU

m If an application needs to access a protected
resource to accomplish its task (like read a file
or send a message on the network), how can it
do that at user mode?

r Once an application is running how can we
force it to relinquish control?

3

-13

System Calls

r If an application legitimately needs to access a
protected feature (Ex. read a file from disk, it
calls a special OS procedure called a “system call”
m System call instruction executed with a parameter that

designates specific call desired and any other
parameters needed

m The state of the user program is saved so that it can be
restored (context switch to the OS)

m Control passed to an OS procedure to accomplish the
task and mode bit changed!

m OS procedure runs at the request of the user program
but can verify the user program’s “rights” and refuse to
perform the action if necessary

m On completion of the system call, the state of user
program including the old mode bit is restored

-14

System Call Illustrated

User mode
Kernel mode

File.open(“/home/README”)

Save user registers and mode, lookup
SYS_OPEN in a table of system call procedures,
Change mode bit, jump to the kernelOpen procedure

SystemCall (SYS_OPEN, “/home/README”)

kernelOpen (“/home/README”,
this applications access rights)

Resume application with file
opened or error

Restore user
mode and
application’s
registers etc.

-15

Memory Protection

r All code that executes on the CPU must be loaded
into memory (its code, its data, etc.)
m It is executed by setting the program counter register

to point to the memory location of the next instruction
to execute (add, jump, load, store, etc.)

r OS has its code in memory and so does each
runnable user process

r Would we want a process to store random data
into the OS’s code or data segments? What about
into another processes code or data segments?

r What prevents this?

-16

Simple Memory Protection
Hardware
r Give each process a contiguous set of memory

addresses to use and dedicate two registers to
specifying the top and the bottom of this region
m Of course, changing the base and limit register must be

protected!

r Memory protection hardware generally more
powerful that base and limit registers (page
tables, TLB, etc.)

OS

Process 1

Process 2

Base register
Limit register

When process 1 executing, base and
limit set to point to process 1’s memory
region if process 1 tries to load
or store to addresses outside this
region then hardware will transfer
control to the OS

-17

Transferring Control to the OS

r A system call causes control to be
transferred to the OS at the application’s
request

r Other things can cause control to be
transferred to the OS but not at the
application’s request
m Could be that the application did something

wrong like tried to address memory it shouldn’t
or tries to divide by 0, etc.

m Could be that a hardware device is requesting
service

-18

Concrete Example: Intel CPU

r During OS initialization:
m Interrupt Descriptor Table (IDT) loaded with handlers

for each kind of interrupt
m System call is interrupt vector 128 (0x80)
m Kernel code segment is set to have privilege level 0 (user

code runs at 3)
r Entry in IDT corresponding to vector 128 is set

with:
m Pointer to the kernel code segment and offset of the

system call handler in this segment
m Permission for code running at level 3 to invoke it

r To make system call, user level app:
m Sets eax register to the system call number
m Executes “int 0x80” instruction

4

-19

A Day in the Life of the OS

r When a machine reboots, the operating system will
execute for some time to initialize the state of
the machine and to start up certain system
processes

r Once initialization is complete, the OS only
executes when some “event” (e.g. system call,
device interrupt) occurs that require its attention

r When an event occurs
m The current state of the machine is saved
m The mode changes to protected mode
m An event handler procedure is executed (handlers for all

possible events must be specified)

-20

Interrupts and Exceptions

r Two main types of events
r Exceptions are caused by software

m Normal software requests for OS service are called
“traps”

m Software errors that transfer control to the OS are
called “faults”

r Interrupts are caused by hardware (e.g. device
notifies CPU that it has completed an I/O
request)

r Warning: Understand the various types but don’t
worry too much about the names
m Sometimes system calls called software interrupts
m Sometimes say “trap to the OS” to handle a hardware

interrupt

-21

Overlapping I/O and
Computation
r If we want the OS to be able to efficiently

keep the CPU busy, then I/O devices need
to be able to operate independently

r Even if CPU can do other work while I/O is
pending, system is still inefficient if CPU
constantly needs to check for I/O
completion (polling)
m Interrupts
m DMA
m Buffering

-22

Interrupt Driven I/O
r CPU uses special instructions or writes to special

memory addresses (memory mapped I/O) to
initiate the I/O request

r Device will perform the request while the CPU
does other work

r When the request is complete, the device will send
an interrupt signal to the CPU via a shared bus

r Interrupt causes control to transfer to the OS
(even if an application is in the middle of
execution)

r Interrupt handler saves the context of the
current process and then uses the interrupt type
to index into a vector table of routines

r Control switches to the procedure registered in
the table to handle the specific interrupt

-23

Interrupting interrupts?

rWhat happens if get another interrupt
while processing one? Information about
first interrupt could be lost

r Disable interrupts while processing an
interrupt

rWhen finished processing an interrupt,
check other devices with pending requests
for a “done” status

-24

Intel Architecture’s PIC

r Programmable Interrupt Controller (PIC) is a chip
that offloads some interrupt processing from the
main CPU

r Serves a referee to prioritize interrupt signals
and allows devices to prevent conflicts
m Device interrupts go to the PIC; PIC determines which

device raised the interrupt; Sends interrupt to the CPU
with a value indicating the interrupt service routine to
invoke

m If multiple interrupts, PIC will buffer them and send
them one at a time to the CPU

r Treated by the main CPU as a peripheral

5

-25

Request Processing With
Interrupts
r To issue a request, OS executes the “top half”

initiates request processing
m Check if device is available
m If so write command, address and data registers
m Stores info about the request issued
m CPU returns to other processing; device controller gets

busy working on request
r When request is done, “bottom half” completes

request
m device controller interrupts the CPU, finds interrupt

handler and retrieves info stored about the request
m CPU copies data from the device controller registers to

main memory if needed
m Sets device status to available

-26

DMA

r Still if we want to transfer large chunks of data,
CPU will still need to be very involved
m For each small chunk of data, CPU must write a command

to the command and address registers and transfer data
to/from the data register

m Very regular pattern
r DMA or Direct Memory Access automates this

process and provides even greater overlap of
computation and I/O
m Tell device controller with DMA: Starting memory

address and length and it will get each piece directly
from memory as it needs it

m Scatter/gather list: don’t limit it to single start/length

-27

Buffering

r Still more can be one to overlap computation and
I/O

r What if I/O is slow enough and requested
frequently enough, all processes may be waiting
for I/O
m I/O bound vs compute bound jobs

r For writes, copy data to a buffer and then allow
process to continue while data is written from
buffer to device
m If system crashes?

r For reads, read data ahead in anticipation of
demand

-28

Memory Mapped I/O

r For each device, set aside a range of memory that
will be mapped to the registers of the device

r The CPU thinks it is reading/writing memory
locations (same instructions, same addressing
scheme)

r Without memory mapped I/O, CPU needs a way to
name each register on each device controller
m Special instructions? Device/register addresses?
m Required knowledge of number and type of devices at

design time

-29

Regaining the CPU

r If a user application is running on the CPU, what
can the OS do to make it yield the CPU after its
turn?
m Timer (clock) operation
m Timer generates interrupts on a regular interval to

transfer control back to the OS

r What will the OS due when it regains control?
Give another application a chance to run
m Which one? Scheduling
m How? Context Switch
m More on this later…

-30

Synchronization

r When we write a program, we think about adjacent
instructions happening in order without
interruption

r We’ve seen lots of things that can interrupt the
execution of a process (timers, I/O request
completion, etc.)
m Most times this is ok; the state of our process is

restored and the illusion is maintained
m But sometimes it is really important that two things

happen together with no interruption
m Specifically if two processes are sharing resources

• Example: two processes updating a shared database of
account balances; one reads balance and adds $100, one
reads balance and removes $100

6

-31

Hardware support for
Synchronization
r Need a way to guarantee that a sequence of

instructions occur at once – at least with respect
to other entities that are accessing the same data

r Solution 1: Disable Interrupts
m Until re-enabled, instruction sequence will run to

completion
m Would you like to allow applications to do this?

r Solution 2: Provide Locks
m Acquire lock, perform sequence, release lock
m Sequence may be interrupted but interruption not visible

to others because they wait to acquire the lock

-32

Building Locks

r Acquiring a shared lock is the same problem as
updating a shared bank balance

r Hardware can provide a grouping of instructions
that it will guarantee to happen atomically
m Test and set, read/modify/write
m From these build locks, from locks build any atomic unit

Read balance ($300)
Read balance ($300)
Decrement $100 ($200)
Increment $100 ($400)
Write balance ($200)
Write balance ($400)

Withdrawal lost!

Is lock free? (yes)
Is lock free? (yes)
Write “I’ve got lock”
Write “I’ve got lock”
Proceed to access
Proceed to access

Concurrent access violating lock!

-33

OS Layer

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware

-34

Programmers/users demand
performance
r Users want to realize the full “advertised”

capability of a hardware resource
m If they have a disk capable of 20 MB/sec transfer rate,

then they would like to be able to read files at that rate
m If they have a network interface card capable of 100

Mbit/sec transmission rate, then they would like to be
able to send data at that rate

r Operating System usually provide the desired
functionality at a cost of some overhead (tax like
the government)
m Avoid seek and rotational delay when reading/writing to

the disk
m Avoid control messages sent over the network
m Use a minimum of memory/disk space

r Programmers/users want that tax to be at a
minimum

-35

Performance Optimization

r Operating systems try to optimize their
algorithms to minimize the “tax” on applications

r What algorithms minimize the tax? That is a hard
question – depends on what your workload is

r Example: What data do you keep in memory?
m LRU is generally good but is exactly the wrong thing for

large sequential accesses

r Optimize for the “common” case? Adapt? Let
applications give hints?

-36

OS Goals

r So operating systems should:
m Abstract the raw hardware
m Protect apps from each other
m Not allow applications to monopolize more that their fair

share of system resources
m Provide desired functionality
m Expose the raw capability of the hardware, minimizing

the “tax”
m Optimize for the expected (any?) workload
m Be simple enough that the code executes quickly and can

be debugged easily
r Does this sound like a big job to anyone?

7

-37

Outtakes

-38

Programmers/users demand
functionality
r Operating systems provide commonly needed

functionality
m Programmers want stable storage, want to be able to

share contents with other apps => file system with
naming scheme shared by all processes

m Programmers don’t want to deal with paging their own
code and data in and out of limited physical memory (and
want protection/isolation from other processes) =>
virtual memory

m Programmers want running processes to be able to
communicate (not complete protection and isolation) =>
shared memory regions, pipes, sockets, events

m Users don’t want a single task to be able to monopolize
the CPU => preemptive scheduling

m Users want to be able to designate high and low priority
processes => priority scheduling

m …….

-39

Application demands exceed OS
functionality?
r Not all applications are happy with the

operating system’s services
r Many things an operating system does,

application programmers could do on their
own if they were sufficiently motivated

r Examples:
m Databases traditionally ask for a raw disk

partition and manage it themselves (who needs
the FS?)

m User-level thread libraries can be more
efficient than kernel level threads

-40

Application Moves Into the OS

r If a computer system is going to be used,
for one application, can avoid overhead of
crossing user/kernel protection boundary
by putting the application in the kernel

-41

Driving forces for OS
development?
r Many times platform implies operating system;

system hardware usually marketed more than OS
r Choice of OS for the PC platform is not the norm
r Even on PC platform, what drives OS development

m Application mix, stability, politics bigger factors than OS
features?

m OS features driven by stability and ease of
porting/writing apps

r All this implies OS you use every day doesn’t
follow the bleeding edge like hardware

