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OS Layer

r Remember OS is a layer between the underlying 
hardware and application demands

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware
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Raw Materials

rWhat does the OS have to work to provide 
an efficient, fair, convenient, secure 
computing platform? 

r Raw hardware
m CPU architecture (instruction sets, registers, 

busses, caches, DMA controllers, etc.)
m Peripherals (CD-ROMs, disk drives, network 

interfaces, etc.)
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Computer System Architecture

ALU

Control

-5

CPU

r Registers
• Local storage or scratch space

r Arthimetic logic unit (ALU) 
• Addition, multiplication, etc (integer and/or floating point)
• Logical operations like testing for equality or 0
• Operations performed by loading values into registers from 

memory,  operating on the values in the registers, then 
saving register values back to memory

r Control unit 
• Cause a sequence of instructions, stored in memory to be 

retrieved and executed
• Fetch instruction from memory, decode instruction, signal 

functional units to carry out tasks
• PC = program counter contains memory address of 

instruction being processed
• IR – instruction register – copy of the current instruction
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Bus and Memory

r Bus
m Address lines, data lines, some lines for arbitration
m Internal communication pathway between CPU, memory 

and device controllers
m Sometimes one system bus; sometimes separate memory 

bus and I/O bus 

r Memory 
m Both data and instructions must be loaded from memory 

into the CPU in order to be executed
m To access memory, address placed in memory address 

register and command register written
m Range of memory addresses? Size of data register? 

Determined by memory technology
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Devices

r Device controllers 
m Small processing units that connect a device to the 

system bus 
m Registers that can be read/written by CPU

• command register (what to do), status register (is the 
device busy? Has the device completed a request?) , data 
register to store data bring written to the device or read 
from the device

r Device drivers 
m Software to hide the complexities of the device 

controller interface behind a higher level logical API
m Example: read lba 10 instead vs. write command value 

0x30 to command register, address 10 to address 
register,… 
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Better Raw Material?

r The “better” the underlying hardware, the 
better computing experience the OS can 
expose

r Certainly the faster the CPU, the more 
memory, etc. the better experience the 
OS can expose to applications

r Also there are some features that the 
hardware can provide to make the OS’s job 
much easier 

r Lets see if we can guess some…
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Enforcing Protection

r If we want the operating system to be able 
to enforce protection and policies on all 
user processes, what can give the OS the 
power to do that?
m Protected Instructions
m Deny applications direct access to the hardware
m Protected Mode of Execution (user vs kernel)
mMemory protection hardware
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Protected Instructions

r If you would look over the assembly language for a 
computer, you may notice that some instructions 
look pretty dangerous
m Should any application be allowed to directly execute the 

halt instruction? Denial of service attack?
m Should any application be allowed to directly access I/O 

devices? Read any ones files from disk?
r Hardware can help OS by designating some 

instructions as protected instructions that only 
the OS can issue

r How can the hardware tell whether it is OS 
(kernel) code or user code?
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Protected Mode

r In addition to designating certain instructions as 
protected instructions, the hardware would need 
to be able to distinguish the OS from user apps

r Most architectures have a “mode” value in a 
protected register
m When user applications execute, the mode value is set to 

one thing
m When the OS kernel executes, the mode value set to 

something else
m If code running in user mode, an attempt to execute 

protected instructions will generate an exception
m Switching the mode value must of course be protected

r Some architectures support more protection 
modes than just user/kernel
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Switching Modes

r So how do we switch between an OS 
running in kernel mode and an application 
running in user mode?
m OS could set the mode bit to a different mode 

before allowing the application to run on the 
CPU

m If an application needs to access a protected 
resource to accomplish its task (like read a file 
or send a message on the network), how can it 
do that at user mode?

r Once an application is running how can we 
force it to relinquish control?
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System Calls

r If an application legitimately needs to access a 
protected feature (Ex. read a file from disk, it 
calls a special OS procedure called a “system call”
m System call instruction executed with a parameter that 

designates specific call desired and any other 
parameters needed

m The state of the user program is saved so that it can be 
restored (context switch to the OS)

m Control passed to an OS procedure to accomplish the 
task and mode bit changed!

m OS procedure runs at the request of the user program 
but can verify the user program’s “rights” and refuse to 
perform the action if necessary

m On completion of the system call, the state of user 
program including the old mode bit is restored 
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System Call Illustrated

User mode
Kernel mode

File.open(“/home/README”)

Save user registers and mode, lookup
SYS_OPEN in a table of system call procedures,
Change mode bit, jump to the kernelOpen procedure

SystemCall (SYS_OPEN, “/home/README”)

kernelOpen (“/home/README”, 
this applications access rights)

Resume application with file
opened or error

Restore user 
mode and 
application’s 
registers etc.
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Memory Protection

r All code that executes on the CPU must be loaded 
into memory (its code, its data, etc.)
m It is executed by setting the program counter register 

to point to the memory location of the next instruction 
to execute (add, jump, load, store, etc.)

r OS has its code in memory and so does each 
runnable user process

r Would we want a process to store random data 
into the OS’s code or data  segments? What about 
into another processes code or data segments?  

r What prevents this?

-16

Simple Memory Protection 
Hardware
r Give each process a contiguous set of memory 

addresses to use and dedicate two registers to 
specifying the top and the bottom of this region
m Of course, changing the base and limit register must be 

protected! 

r Memory protection hardware generally more 
powerful that base and limit registers (page 
tables, TLB, etc.)

OS

Process 1

Process 2

Base register
Limit register

When process 1 executing, base and 
limit set to point to process 1’s memory 
region if process 1 tries to load 
or store to addresses outside this 
region then hardware will transfer 
control to the OS 
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Transferring Control to the OS

r A system call causes control to be 
transferred to the OS at the application’s 
request

r Other things can cause control to be 
transferred to the OS but not at the 
application’s request
m Could be that the application did something 

wrong like tried to address memory it shouldn’t 
or tries to divide by 0, etc.

m Could be that a hardware device is requesting 
service
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Concrete Example: Intel CPU

r During OS initialization:
m Interrupt Descriptor Table (IDT) loaded with handlers 

for each kind of interrupt
m System call is interrupt vector 128 (0x80)
m Kernel code segment is set to have privilege level 0 (user 

code runs at 3)
r Entry in IDT corresponding to vector 128 is set 

with:
m Pointer to the kernel code segment and offset of the 

system call handler in this segment
m Permission for code running at level 3 to invoke it

r To make system call, user level app:
m Sets eax register to the system call number
m Executes “int 0x80” instruction
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A Day in the Life of the OS

r When a machine reboots, the operating system will 
execute for some time to initialize the state of 
the machine and to start up certain system 
processes

r Once initialization is complete, the OS only 
executes when some “event” (e.g. system call, 
device interrupt) occurs that require its attention

r When an event occurs
m The current state of the machine is saved
m The mode changes to protected mode
m An event handler procedure is executed (handlers for all 

possible events must be specified)
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Interrupts and Exceptions

r Two main types of events
r Exceptions are caused by software

m Normal software requests for OS service are called 
“traps” 

m Software errors that transfer control to the OS are 
called “faults”

r Interrupts are caused by hardware (e.g. device 
notifies CPU that it has completed an I/O 
request)

r Warning: Understand the various types but don’t 
worry too much about the names
m Sometimes system calls called software interrupts
m Sometimes say “trap to the OS” to handle a hardware 

interrupt
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Overlapping I/O and 
Computation
r If we want the OS to be able to efficiently 

keep the CPU busy, then I/O devices need 
to be able to operate independently

r Even if CPU can do other work while I/O is 
pending, system is still inefficient if CPU 
constantly needs to check for I/O 
completion (polling) 
m Interrupts
m DMA
m Buffering
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Interrupt Driven I/O
r CPU uses special instructions or writes to special 

memory addresses (memory mapped I/O) to 
initiate the I/O request

r Device will perform the request while the CPU 
does other work

r When the request is complete, the device will send 
an interrupt signal to the CPU via a shared bus

r Interrupt causes control to transfer to the OS 
(even if an application is in the middle of 
execution)

r Interrupt handler saves the context of the 
current process and then uses the interrupt type 
to index into a vector table of routines

r Control switches to the procedure registered in 
the table to handle the specific interrupt 

-23

Interrupting interrupts?

rWhat happens if get another interrupt 
while processing one? Information about 
first interrupt could be lost

r Disable interrupts while processing an 
interrupt

rWhen finished processing an interrupt, 
check other devices with pending requests 
for a “done” status
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Intel Architecture’s PIC

r Programmable Interrupt Controller (PIC)  is a chip 
that offloads some interrupt processing from the 
main CPU

r Serves a referee to prioritize interrupt signals 
and allows devices to prevent conflicts
m Device interrupts go to the PIC; PIC determines which 

device raised the interrupt; Sends interrupt to the CPU 
with a value indicating the interrupt service routine to 
invoke

m If multiple interrupts, PIC will buffer them and send 
them one at a time to the CPU

r Treated by the main CPU as a peripheral
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Request Processing With 
Interrupts
r To issue a request, OS executes the “top half” 

initiates request processing
m Check if device is available
m If so write command, address and data registers
m Stores info about the request issued
m CPU returns to other processing; device controller gets 

busy working on request
r When request is done, “bottom half” completes 

request
m device controller interrupts the CPU, finds interrupt 

handler and retrieves info stored about the request
m CPU copies data from the device controller registers to 

main memory if needed
m Sets device status to available
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DMA 

r Still if we want to transfer large chunks of data, 
CPU will still need to be very involved
m For each small chunk of data, CPU must write a command 

to the command and address registers and transfer data 
to/from the data register

m Very regular pattern
r DMA or Direct Memory Access automates this 

process  and provides even greater overlap of 
computation and I/O
m Tell device controller with DMA: Starting memory 

address and length and it will get each piece directly 
from memory as it needs it

m Scatter/gather list: don’t limit it to single start/length
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Buffering

r Still more can be one to overlap computation and 
I/O

r What if I/O is slow enough and requested 
frequently enough, all processes may be waiting 
for I/O
m I/O bound vs compute bound jobs

r For writes, copy data to a buffer and then allow 
process to continue while data is written from 
buffer to device
m If system crashes?

r For reads, read data ahead in anticipation of 
demand
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Memory Mapped I/O

r For each device, set aside a range of memory that 
will be mapped to the registers of the device

r The CPU thinks it is reading/writing memory 
locations (same instructions, same addressing 
scheme)

r Without memory mapped I/O, CPU needs a way to 
name each register on each device controller
m Special instructions? Device/register addresses?
m Required knowledge of number and type of devices at 

design time
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Regaining the CPU

r If a user application is running on the CPU, what 
can the OS do to make it yield the CPU after its 
turn?
m Timer (clock) operation
m Timer generates interrupts on a regular interval to 

transfer control back to the OS

r What will the OS due when it regains control? 
Give another application a chance to run
m Which one? Scheduling 
m How? Context Switch
m More on this later…
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Synchronization

r When we write a program, we think about adjacent 
instructions happening in order without 
interruption

r We’ve seen lots of things that can interrupt the 
execution of a process (timers, I/O request 
completion, etc.)
m Most times this is ok; the state of our process is 

restored and the illusion is maintained
m But sometimes it is really important that two things 

happen together with no interruption
m Specifically if two processes are sharing resources

• Example: two processes updating a shared database of 
account balances; one reads balance and adds $100, one 
reads balance and removes $100
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Hardware support for 
Synchronization
r Need a way to guarantee that a sequence of 

instructions occur at once – at least with respect 
to other entities that are accessing the same data

r Solution 1: Disable Interrupts 
m Until re-enabled, instruction sequence will run to 

completion
m Would you like to allow applications to do this?

r Solution 2: Provide Locks
m Acquire lock, perform sequence, release lock
m Sequence may be interrupted but interruption not visible 

to others because they wait to acquire the lock
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Building Locks

r Acquiring a shared lock is the same problem as 
updating a shared bank balance

r Hardware can provide a grouping of instructions 
that it will guarantee to happen atomically
m Test and set, read/modify/write
m From these build locks, from locks build any atomic unit

Read balance ($300)
Read balance ($300)
Decrement $100 ($200)
Increment $100 ($400)
Write balance ($200)
Write balance ($400)

Withdrawal lost!

Is lock free? (yes)
Is lock free? (yes)
Write “I’ve got lock”
Write “I’ve got lock”
Proceed to access
Proceed to access

Concurrent access violating lock!
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OS Layer

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware
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Programmers/users demand 
performance
r Users want to realize the full “advertised” 

capability of a hardware resource
m If they have a disk capable of 20 MB/sec transfer rate, 

then they would like to be able to read files at that rate
m If they have a network interface card capable of 100 

Mbit/sec transmission rate, then they would like to be 
able to send data at that rate

r Operating System usually provide the desired 
functionality at a cost of some overhead (tax like 
the government)
m Avoid seek and rotational delay when reading/writing to 

the disk
m Avoid control messages sent over the network 
m Use a minimum of memory/disk space

r Programmers/users want that tax to be at a 
minimum
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Performance Optimization

r Operating systems try to optimize their 
algorithms to minimize the “tax” on applications

r What algorithms minimize the tax? That is a hard 
question – depends on what your workload is

r Example: What data do you keep in memory?
m LRU is generally good but is exactly the wrong thing for 

large sequential accesses

r Optimize for the “common” case? Adapt? Let 
applications give hints?
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OS Goals

r So operating systems should:
m Abstract the raw hardware
m Protect apps from each other
m Not allow applications to monopolize more that their fair 

share of system resources
m Provide desired functionality 
m Expose the raw capability of the hardware, minimizing 

the “tax”
m Optimize for the expected (any?) workload
m Be simple enough that the code executes quickly and can 

be debugged easily
r Does this sound like a big job to anyone?
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Outtakes
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Programmers/users demand 
functionality
r Operating systems provide commonly needed 

functionality
m Programmers want stable storage, want to be able to 

share contents with other apps => file system with 
naming scheme shared by all processes

m Programmers don’t want to deal with paging their own 
code and data in and out of limited physical memory (and 
want protection/isolation from other processes) => 
virtual memory

m Programmers want running processes to be able to 
communicate (not complete protection and isolation) => 
shared memory regions, pipes, sockets, events

m Users don’t want a single task to be able to monopolize 
the CPU => preemptive scheduling

m Users want to be able to designate high and low priority 
processes => priority scheduling

m …….
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Application demands exceed OS 
functionality?
r Not all applications are happy with the 

operating system’s services
r Many things an operating system does, 

application programmers could do on their 
own if they were sufficiently motivated

r Examples:
m Databases traditionally ask for a raw disk 

partition and manage it themselves (who needs 
the FS?) 

m User-level thread libraries can be more 
efficient than kernel level threads
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Application Moves Into the OS

r If a computer system is going to be used, 
for one application, can avoid overhead of 
crossing user/kernel protection boundary 
by putting the application in the kernel
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Driving forces for OS 
development?
r Many times platform implies operating system; 

system hardware usually marketed more than OS
r Choice of OS for the PC platform is not the norm
r Even on PC platform, what drives OS development

m Application mix, stability, politics bigger factors than OS 
features?

m OS features driven by stability and ease of 
porting/writing apps

r All this implies OS you use every day doesn’t 
follow the bleeding edge like hardware


