
1

-1

19: Distributed Coordination

Last Modified:
12/4/2002 9:23:18 PM

-2

Last Time

❒ We talked about the potential benefits of
distributed systems

❒ We also talked about some of the reasons
they can be so difficult to build

❒ Today we are going to tackle some of these
problems!

-3

Recall

❒ Distributed systems
❍ Components can fail (not fail-stop)
❍ Network partitions can occur in which each

portion of the distributed system thinks they
are the only ones alive

❍ Don’t have a shared clock
❍ Can’t rely on hardware primitives like test-and-

set for mutual exclusion
❍ …

-4

Distributed Coordination
❒ To tackle this complexity we are going

to build distributed algorithms for:
❍ Event Ordering
❍ Mutual Exclusion
❍ Atomicity
❍ Deadlock Handling
❍ Election Algorithms
❍ Reaching Agreement

-5

Event Ordering

❒ Problem: distributed systems do not share
a clock
❍ Many coordination problems would be simplified

if they did (“first one wins”)
❒ Distributed systems do have some sense of

time
❍ Events in a single process happen in order
❍ Messages between processes must be sent

before they can be received
❍ How helpful is this?

-6

Happens-before

❒ Define a Happens-before relation (denoted
by →).
❍ 1) If A and B are events in the same process,

and A was executed before B, then A → B.
❍ 2) If A is the event of sending a message by

one process and B is the event of receiving that
message by another process, then A → B.

❍ 3) If A → B and B → C then A → C.

2

-7

Total ordering?

❒ Happens-before gives a partial ordering of
events

❒ We still do not have a total ordering of
events

-8

Partial Ordering

Pi ->Pi+1; Qi -> Qi+1; Ri -> Ri+1 R0->Q4; Q3->R4; Q1->P4; P1->Q2

-9

Total Ordering?

P0, P1, Q0, Q1, Q2, P2, P3, P4, Q3, R0, Q4, R1, R2, R3, R4

P0, Q0, Q1, P1, Q2, P2, P3, P4, Q3, R0, Q4, R1, R2, R3, R4

P0, Q0, P1, Q1, Q2, P2, P3, P4, Q3, R0, Q4, R1, R2, R3, R4

-10

Timestamps
❒ Assume each process has a local logical clock that

ticks once per event and that the processes are
numbered

❍ Clocks tick once per event (including message send)
❍ When send a message, send your clock value
❍ When receive a message, set your clock to MAX(your

clock, timestamp of message + 1)
• Thus sending comes before receiving
• Only visibility into actions at other nodes happens during

communication, communicate synchronizes the clocks
❍ If the timestamps of two events A and B are the same,

then use the process identity numbers to break ties.
❒ This gives a total ordering!

-11

Distributed Mutual Exclusion
(DME)
❒ Problem: We can no longer rely on just an

atomic test and set operation on a single
machine to build mutual exclusion
primitives

❒ Requirement
❍ If Pi is executing in its critical section, then no

other process Pj is executing in its critical
section.

-12

Solution

❒ We present three algorithms to ensure the
mutual exclusion execution of processes in
their critical sections.
❍ Centralized Distributed Mutual Exclusion

(CDME)
❍ Fully Distributed Mutual Exclusion (DDME)
❍ Token passing

3

-13

CDME: Centralized Approach
❒ One of the processes in the system is chosen to

coordinate the entry to the critical section.
❍ A process that wants to enter its critical section sends a

request message to the coordinator.
❍ The coordinator decides which process can enter the critical

section next, and its sends that process a reply message.
❍ When the process receives a reply message from the

coordinator, it enters its critical section.
❍ After exiting its critical section, the process sends a

release message to the coordinator and proceeds with its
execution.

❒ 3 messages per critical section entry

-14

Problems of CDME

❒ Electing the master process? Hardcoded?
❒ Single point of failure? Electing a new

master process?
❒ Distributed Election algorithms later…

-15

DDME: Fully Distributed
Approach
❒ When process Pi wants to enter its critical section,

it generates a new timestamp, TS, and sends the
message request (Pi, TS) to all other processes in
the system.

❒ When process Pj receives a request message, it
may reply immediately or it may defer sending a
reply back.

❒ When process Pi receives a reply message from all
other processes in the system, it can enter its
critical section.

❒ After exiting its critical section, the process
sends reply messages to all its deferred requests.

-16

DDME: Fully Distributed
Approach (Cont.)
❒ The decision whether process Pj replies

immediately to a request(Pi, TS) message or
defers its reply is based on three factors:

❍ If Pj is in its critical section, then it defers its reply to
Pi.

❍ If Pj does not want to enter its critical section, then it
sends a reply immediately to Pi.

❍ If Pj wants to enter its critical section but has not yet
entered it, then it compares its own request timestamp
with the timestamp TS.

• If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first).

• Otherwise, the reply is deferred.

-17

Problems of DDME

❒ Requires complete trust that other processes will
play fair

❍ Easy to cheat just by delaying the reply!
❒ The processes needs to know the identity of all

other processes in the system
❍ Makes the dynamic addition and removal of processes

more complex.
❒ If one of the processes fails, then the entire

scheme collapses.
❍ Dealt with by continuously monitoring the state of all the

processes in the system.
❒ Constantly bothering people who don’t care

❍ Can I enter my critical section? Can I?

-18

Token Passing

❒ Circulate a token among processes in the
system

❒ Possession of the token entitles the holder
to enter the critical section

❒ Organize processes in system into a logical
ring
❍ Pass token around the ring
❍ When you get it, enter critical section if need

to then pass it on when you are done (or just
pass it on if don’t need it)

4

-19

Problems of Token Passing

❒ If machines with token fails, how to
regenerate a new token?

❒ A lot like electing a new coordinator
❒ If process fails, need to repair the break

in the logical ring

-20

Compare: Number of
Messages?
❒ CDME: 3 messages per critical section

entry
❒ DDME: The number of messages per

critical-section entry is 2 x (n – 1)
❍ Request/reply for everyone but myself

❒ Token passing: Between 0 and n messages
❍ Might luck out and ask for token while I have it

or when the person right before me has it
❍ Might need to wait for token to visit everyone

else first

-21

Compare : Starvation
❒ CDME : Freedom from starvation is ensured if

coordinator uses FIFO
❒ DDME: Freedom from starvation is ensured, since

entry to the critical section is scheduled according
to the timestamp ordering. The timestamp
ordering ensures that processes are served in a
first-come, first served order.

❒ Token Passing: Freedom from starvation if ring is
unidirectional

❒ Caveats
❍ network reliable (I.e. machines not “starved” by inability

to communicate)
❍ If machines fail they are restarted or taken out of

consideration (I.e. machines not “starved” by
nonresponse of coordinator or another participant)

❍ Processes play by the rules -22

Why ever do DDME?

❒ Harder
❒ More messages
❒ Bothers more people
❒ Coordinator just as bothered

-23

Atomicity

❒ Recall: Atomicity = either all the
operations associated with a program unit
are executed to completion, or none are
performed.

❒ In a distributed system may have multiple
copies of the data , replicas are good for
reliability/availability

❒ PROBLEM: How do we atomically update all
of the copies?

-24

Replica Consistency Problem

❒ Imagine we have multiple bank servers and a client
desiring to update their back account

❍ How can we do this?
❒ Allow a client to update any server then have

server propagate update to other servers
❍ Simple and wrong!
❍ Simultaneous and conflicting updates can occur at

different servers?
❒ Have client send update to all servers

❍ Same problem - race condition – which of the conflicting
update will reach each server first

5

-25

Two-phase commit

❒ Algorithm for providing atomic updates in a
distributed system

❒ Give the servers (or replicas) a chance to
say no and if any server says no, client
aborts the operation

-26

Framework

❒ Goal: Update all replicas atomically
❍ Either everyone commits or everyone aborts
❍ No inconsistencies even if face of failures
❍ Caveat: Assume no byzantine failures (servers stop when

they fail – do not continue and generate bad data)
❒ Definitions

❍ Coordinator: Software entity that shepherds the process
(client in our example could be one of the servers)

❍ Ready to commit: side effects of update safely stored
non-volatilely (recall: write ahead logging)

• Even if crash, once say I am ready to commit then when
recover will find evidence and continue with commit protocol

-27

Two Phase Commit: Phase 1

❒ Coordinator send a PREPARE message to
each replica

❒ Coordinator waits for all replicas to reply
with a vote

❒ Each participant send vote
❍ Votes PREPARED if ready to commit and locks

data items being updated
❍ Votes NO if unable to get a lock or unable to

ensure ready to commit

-28

Two Phase Commit: Phase 2

❒ If coordinator receives PREPARED vote from all
replicas then it may decide to commit or abort

❒ Coordinator send its decision to all participants
❒ If participant receives COMMIT decision then

commit changes resulting from update
❒ If participant received ABORT decision then

discard changes resulting from update
❒ Participant replies DONE
❒ When Coordinator received DONE from all

participants then can delete record of outcome

-29

Performance

❒ In absence of failure, 2PC makes a total of
2 (1.5?) round trips of messages before
decision is made
❍ Prepare
❍ Vote NO or PREPARE
❍ Commit/abort
❍ Done (but done just for bookkeeping, does not

affect response time)

-30

Failure Handling in 2PC –
Replica Failure
❒ The log contains a <commit T> record. In

this case, the site executes redo(T).
❒ The log contains an <abort T> record. In

this case, the site executes undo(T).
❒ The contains a <ready T> record; consult Ci.

If Ci is down, site sends query-status T
message to the other sites.

❒ The log contains no control records
concerning T. In this case, the site
executes undo(T).

6

-31

Failure Handling in 2PC – Coordinator Ci
Failure

❒ If an active site contains a <commit T> record in
its log, the T must be committed.

❒ If an active site contains an <abort T> record in its
log, then T must be aborted.

❒ If some active site does not contain the record
<ready T> in its log then the failed coordinator Ci
cannot have decided to
commit T. Rather than wait for Ci to recover, it is
preferable to abort T.

❒ All active sites have a <ready T> record in their
logs, but no additional control records. In this
case we must wait for the coordinator to recover.

❍ Blocking problem – T is blocked pending the recovery of
site Si.

-32

Failure Handling

❒ Failure detected with timeouts
❒ If participant times out before getting a PREPARE

can abort
❒ If coordinator times out waiting for a vote can

abort
❒ If a participant times out waiting for a decision it

is blocked!
❍ Wait for Coordinator to recover?
❍ Punt to some other resolution protocol

❒ If a coordinator times out waiting for done, keep
record of outcome

❒ other sites may have a replica.

-33

Deadlock Handling

❒ Recall our discussion of deadlock in the
single node case

❒ Same problem can occur in distributed
system

❒ Worse? Because harder to do manual
detection and recovery
❍ Can’t just note single machine is slow/hung and

and reboot
❒ How can we deal with deadlock in a

distributed system?
-34

Global Ordering

❒ Resource-ordering deadlock-prevention – define a
global ordering among the system resources.

❍ Assign a unique number to all system resources.
❍ A process may request a resource with unique number i

only if it is not holding a resource with a unique number
grater than i.

❒ Simple to implement; requires little overhead but
how easy is it to establish a global ordering?

❍ We had this same issue in the single node case. This is a
good approach when you can make it work.

-35

Extend the Banker’s Algorithm

❒ Recall the Banker’s algorithm
❍ Avoids deadlock by not committing resources unless

there is a guaranteed way to complete all
❒ Banker’s algorithm is a distributed system?
❒ Designate one of the processes in the system as

the process that maintains the information
necessary to carry out the Banker’s algorithm.

❍ Straight-forward extension of single node case but
❍ Banker is bottleneck
❍ Messages on each resource acquire/release
❍ Same as in single node case: sounds good but pretty

expensive!

-36

Other choices?

❒ What about borrowing from how databases
deal with deadlock?

7

-37

Recall: Timestamp-Based
Protocols
❒ Method for selecting the order among

conflicting transactions
❒ Associate with each transaction a number

which is the timestamp or clock value when
the transaction begins executing

❒ Associate with each data item the largest
timestamp of any transaction that wrote
the item and another the largest
timestamp of a transaction reading the
item

-38

Timestamp-Ordering

❒ If timestamp of transaction wanting to
read data < write timestamp on the data
then it would have needed to read a value
already overwritten so abort the reading
transaction

❒ If timestamp if transaction wanting to
read data < read timestamp on the data
then the last read would be invalid but it is
committed so abort the writing transaction

❒ Ability to abort/rollback is crucial!

-39

Timestamped Deadlock-Prevention
Scheme for DS
❒ Each process Pi is assigned a unique

timestamp (or priority)
❍ Timestamps are used to decide whether a

process Pi should wait for a process Pj;
otherwise Pi is rolled back.

❍ The scheme prevents deadlocks. For every
edge Pi → Pj in the wait-for graph, Pi has a
higher priority than Pj. Thus a cycle cannot
exist.

❍ Ability to abort/rollback is crucial

-40

Variations

❒ Wait-Die
❍ Non-preemptive

❒ Wound-wait
❍ Preemptive

❒ Both prevent deadlock by avoiding cycles in
the wait-for graph

-41

Wait-Die Scheme

❒ Nonpreemptive
❒ If PI requests a resource currently held

by PJ, PI is allowed to wait only if it has a
smaller timestamp than PJ (PI is older
than PJ). Otherwise, PI is rolled back
(dies).
❍ Example: Suppose that processes P1, P2, and

P3 have timestamps 1, 2, and 3 respectively.
• if P1 request a resource held by P2, then P1 will wait.
• If P3 requests a resource held by P2, then P3 will be

rolled back.

-42

Wound-Wait Scheme

❒ Preemptive technique
❒ If PI requests a resource currently held by

PJ, PI is allowed to wait only if it has a
larger timestamp than does PJ (PI is
younger than PJ). Otherwise PJ is rolled
back (PJ is wounded by PI).
❍ Example: Suppose that processes P1, P2, and P3

have timestamps 1, 2, and 3 respectively.
• If P1 requests a resource held by P2, then the

resource will be preempted from P2 and P2 will be
rolled back.

• If P3 requests a resource held by P2, then P3 will wait.

8

-43

Summary

Requester
waits

Holder dies
(Requester
wounds holder)

Wound-Wait

Requester diesRequester waitsWait-Die

Holder has
higher
timestamp

Holder has lower
timestamp

-44

Unique Timestamps in
Distributed Environment

Use site identifier as least significant to ensure that
the global timestamps generated at one site not always bigger

-45

Avoiding Starvation

❒ Both are a priority based scheme and so
subject to starvation

❒ Avoid starvation if when rollback a process
allow it to keep its timestamp

❒ Eventually it should be the highest priority
process and will never be rolled back

-46

Deadlock detection

❒ If instead of deadlock prevention, we could
allow deadlocks to occur

❒ Manual detection and recovery is harder in
a distributed system
❍ Notice whole distributed system is slow/hung

and reboot?
❒ But automatic detection would global

knowledge to find cycles in the wait-for
graph

-47

Two Local Wait-For Graphs

Local graphs have no cycles

-48

Global Wait-For Graph

Global graph has a cycle!

9

-49

Deadlock Detection – Centralized
Approach
❒ Each site keeps a local wait-for graph.

The nodes of the graph correspond to
all the processes that are currently
either holding or requesting any of the
resources local to that site.

❒ A global wait-for graph is maintained
in a single coordination process; this
graph is the union of all local wait-for
graphs.

-50

False Cycles

❒ Delay between state of local graph and
when information is sent to coordinator
and included in global graph

❒ Unnecessary rollbacks may occur as a
result of false cycles that occur as a result
of this communication latency

❒ Local graph snapshots may be taken at
different points in time such that the union
suggests a cycle that isn’t really there

-51

Updating the Global Wait-for
Graph
❒ When to send information from local wait-

for graphs to be added into the global
wait-for graph :
1. Whenever a new edge is inserted or removed in

one of the local wait-for graphs (implies
communication with coordinator on every
resource acquire/release!)

2. Periodically, when a number of changes have
occurred in a wait-for graph (at least this can
batch info sent to coordinator)

3. Whenever the coordinator needs to invoke the
cycle-detection algorithm..

-52

A Fully Distributed Option?

❒ We could add one additional node Pex to each local
wait-for graph.

❍ If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state.

❍ A cycle involving Pex implies the possibility of a deadlock.
❒ To ascertain whether a deadlock does really exist:

❍ Send description of potential cycle to some other site
❍ That site augments the graph with info from their local

graph and either detects a deadlock or passes the
augmented graph on to another site until all sites have
contributed

❍ Once been to all sites, have full global wait-for graph

-53

Election Algorithm

-54

Choosing a Coordinator

❒ In many of the distributed coordination
algorithms, we’ve seen some machine is
playing the role of a coordinator
❍ Examples: Coordinators for Centralized

Deadlock Detection or 2 phase commit
❒ How do we choose such a coordinator?
❒ Or elect a new one if the current fails?

10

-55

Election Algorithms
❒ GOAL: Determine where a new copy of the

coordinator should be started/restarted.
❒ Formalize this as:

❍ Assume that a unique priority number is associated with
each active process in the system, and assume that the
priority number of process Pi is i.

❍ The coordinator is always the process with the largest
priority number. When a coordinator fails, the algorithm
must elect that active process with the largest priority
number

❒ Two variants: bully and ring based on topology
(ring for ring network topology, bully for
everything else)

-56

Ring Algorithm
❒ Applicable to systems organized as a ring (logically or

physically).
❍ Assumes that the links are unidirectional, and that processes

send their messages to their right neighbors.

❒ Each process maintains an active list, consisting of all
the priority numbers of all active processes in the
system when the algorithm ends.

❒ If process Pi detects a coordinator failure (timeout
waiting for response), it creates a new active list that
is initially empty.

❍ It then sends a message elect(i) to its right neighbor, and adds
the number i to its active list.

-57

Ring Algorithm (Cont.)

❒ If Pi receives a message elect(j) from the process
on the left, it must respond in one of three ways:

1. If this is the first (in some time) elect message it has
seen or sent, Pi creates a new active list with the
numbers i and j. It then sends the message elect(i),
followed by the message elect(j).

2. If the message does not contain Pi’s number then Pi adds
j to its active list and forwards the message to the right

3. If the message does contain Pi’s number, then Pi should
have seen all previous messages and its active list should
be full

-58

Recovery in Ring Algorithm

❒ Recovering process can send a message
around the ring requesting to know who is
the coordinator

❒ Coordinator will see message as it goes
around ring and reply with its identity

-59

Bully Algorithm
❒ For network topologies other than ring

❍ Must know all other processes in the system
❒ Process Pi sends a request that is not

answered by the coordinator within a
specified time => assume that the
coordinator has failed

❒ Pi tries to elect itself as the new
coordinator

-60

Bully Algorithm (Cont.)
❒ Pi sends an election message to every

process with a higher priority number, Pi
then waits for any of these processes to
answer within T1.
❍ If no response within T1, assume that all

processes with numbers greater than i have
failed; Pi elects itself the new coordinator.

❍ If answer is received, Pi begins time interval
T2, waiting to receive a message that a process
with a higher priority number has been elected.

• If no such message is received within T2, assume the
process with a higher number has failed; Pi should
restart the algorithm

11

-61

Bully Algorithm (Cont.)
❒ If Pi is not the coordinator, then, at any

time during execution, Pi may receive one of
the following two messages from process
Pj.
❍ Pj is the new coordinator (j > i). Pi, in turn,

records this information.
❍ Pj started an election (j < i). Pi, sends a

response to Pj and begins its own election
algorithms

-62

Recovery in Bully Algorithm

❒ After a failed process recovers, it
immediately begins execution of the same
algorithm.

❒ If there are no active processes with
higher numbers, the recovered process
forces all processes with lower number to
let it become the coordinator process, even
if there is a currently active coordinator
with a lower number.

-63

Byzantine Generals Problem

❒ Deals with reaching agreement in the face of both
faulty communications and untrustworthy peers

❒ Problem:
❍ Divisions of an army each commanded by a general

surrounding an enemy camp
❍ Generals must reach agreement on whether to attack (a

certain number must attack or defeat is certain)
❍ Divisions are geographically separated such that they

must communicate via messengers
❍ Messengers may be caught and never reach the other

side (lost messages)
❍ Generals may be traitors (faulty/compromised processes)

-64

Problem 1: Losts
Messengers/Messages
❒ How can we deal with the fact that messages may

be lost? (We saw this in TCP)
❒ Detect failures using a time-out scheme.

❍ When send a message, specifies a time interval to wait
for an acknowledgment

❍ When receives a message, sends an acknowledgment
❍ Acknowledgment can be lost too!.
❍ If receives the acknowledgment message within the

specified time interval can conclude that message was
received its message. If a time-out occurs, retransmit
message and wait for another acknowledgment.

❍ Continue until either receives an acknowledgment, or give
up after some time?

-65

The Last Word?

❒ Suppose, the receiver needs to know that the
sender has received its acknowledgment message,
in order to decide on how to proceed

❒ Actually, in the presence of failure, it is not
possible to accomplish this task

❒ It is not possible in a distributed environment for
processes PI and PJ to agree completely on their
current respective states

❒ Always level of uncertainty about last message

-66

Traitors?
❒ Consider that generals can be traitors

(processes can be faulty)
❒ What could traitors do?

❍ Refuse to send any messages
❍ Delay sending messages
❍ Send incorrect messages
❍ Send different messages to different

generals

12

-67

Formalize Agreement

❒ Consider a system of n processes, of which
no more than m are faulty.

❒ Devise an algorithm that allows each non-
faulty PI to construct a vector XI = (AI 1,
AI 2, …, AI n) such that::
❍ Each process PI has some private value of VI.
❍ If PJ is a nonfaulty process, then AIJ = VJ.
❍ If PI and PJ are both nonfaulty processes, then

XI = XJ.

-68

Solutions to Problem of
Reaching Agreement
❒ Solutions share the following properties.

❍ Assume reliable communication
❍ Bound maximum number of traitors to m
❍ A correct algorithm can be devised only if n ≥ 3

x m + 1.
❍ The worst-case delay for reaching agreement is

proportionate to m + 1 message-passing delays.

-69

Simplest Example

❒ An algorithm for the case where m = 1
and n = 4 (>= 3*m+1) requires m+1 = 2
rounds of information exchange:
❍ Each process sends its private value to the

other 3 processes.
❍ Each process sends the information it has

obtained in the first round to all other
processes.

-70

Simplest Example (con’t)

❒ If a faulty process refuses to send messages, a
nonfaulty process can choose an arbitrary value
and pretend that that value was sent by that
process.

❒ After the two rounds are completed, a nonfaulty
process Pi can construct its vector Xi = (Ai,1, Ai,2,
Ai,3, Ai,4) as follows:

❍ AIJ = VJ.
❍ For j ≠ i, if at least two of the three values reported for

process Pj agree, then the majority value is used to set
the value of AI J. Otherwise, a default value (nil) is used.

-71

Consider

❒ What if n < 4
❍ If n=3 and there was one traitor then it could

lie differently to the two non-traitors and they
could not resolve the discrepancy by a majority
vote

❒ What if only one round?
❍ Second round used to check agreement
❍ Used to see that there is no agreement on what

a “traitor” said

-72

Outtakes

13

-73

❒ Ensuring atomicity in a distributed system
requires a transaction coordinator, which is
responsible for the following:
❍ Starting the execution of the transaction.
❍ Breaking the transaction into a number of

subtransactions, and distribution these
subtransactions to the appropriate sites for
execution.

❍ Coordinating the termination of the
transaction, which may result in the transaction
being committed at all sites or aborted at all
sites.

-74

Two-Phase Commit Protocol
(2PC)
❒ Assumes fail-stop model.

❒ Execution of the protocol is initiated by the
coordinator after the last step of the transaction
has been reached.

❒ When the protocol is initiated, the transaction
may still be executing at some of the local sites.

❒ The protocol involves all the local sites at which
the transaction executed.

❒ Example: Let T be a transaction initiated at site
Si and let the transaction coordinator at Si be Ci.

-75

Phase 1: Obtaining a Decision

❒ Ci adds <prepare T> record to the log.
❒ Ci sends <prepare T> message to all sites.
❒ When a site receives a <prepare T> message, the

transaction manager determines if it can commit
the transaction.

❍ If no: add <no T> record to the log and respond to Ci with
<abort T>.

❍ If yes:
• add <ready T> record to the log.
• force all log records for T onto stable storage.
• transaction manager sends <ready T> message to Ci.

-76

Phase 1 (Cont.)

❒ Coordinator collects responses
❍ All respond “ready”,

decision is commit.
❍ At least one response is “abort”,

decision is abort.
❍ At least one participant fails to respond within

time out period,
decision is abort.

-77

Phase 2: Recording Decision in the
Database

❒ Coordinator adds a decision record
<abort T> or <commit T>

to its log and forces record onto stable storage.
❒ Once that record reaches stable storage it is

irrevocable (even if failures occur).
❒ Coordinator sends a message to each participant

informing it of the decision (commit or abort).
❒ Participants take appropriate action locally.

-78

Concurrency Control

I cut this all together – too similar to mutual
Exclusion – does it deserve a separate discussion

14

-79

Concurrency Control

❒ Modify the centralized concurrency schemes to
accommodate the distribution of transactions.

❒ Transaction manager coordinates execution of
transactions (or subtransactions) that access data
at local sites.

❒ Local transaction only executes at that site.

❒ Global transaction executes at several sites.

-80

Locking Protocols

❒ Nonreplicated scheme – each site maintains
a local lock manager which administers lock
and unlock requests for those data items
that are stored in that site.
❍ Simple implementation involves two message

transfers for handling lock requests, and one
message transfer for handling unlock requests.

❍ Deadlock handling is more complex.

-81

Single-Coordinator Approach

❒ A single lock manager resides in a single
chosen site, all lock and unlock requests are
made a that site.
❍ Simple implementation
❍ Simple deadlock handling
❍ Possibility of bottleneck
❍ Vulnerable to loss of concurrency controller if

single site fails

❒ Multiple-coordinator approach distributes
lock-manager function over several sites.

-82

Majority Protocol

❒ Avoids drawbacks of central control by dealing
with replicated data in a decentralized manner.

❒ Must get ok from at least n/2 +1 participants

❒ Deadlock-handling algorithms must be modified;
possible for deadlock to occur in locking only one
data item.

❍ Example: two processes trying to lock each get 2 out of 4
processes to say ok – each need a third?

-83

Biased Protocol (OUTTAKE)

❒ Similar to majority protocol, but requests
for shared locks prioritized over requests
for exclusive locks.

❒ Less overhead on read operations than in
majority protocol; but has additional
overhead on writes.

❒ Like majority protocol, deadlock handling is
complex.

-84

Primary Copy

❒ One of the sites at which a replica resides is
designated as the primary site. Request to lock a
data item is made at the primary site of that data
item.

❒ Concurrency control for replicated data handled in
a manner similar to that of unreplicated data.

❒ Simple implementation, but if primary site fails,
the data item is unavailable, even though other
sites may have a replica.

15

-85

Example Centralized Deadlock
Detection Algorithm

-86

Detection Algorithm Based on
Option 3

❒ Append unique identifiers (timestamps) to
requests form different sites.

❒ When process Pi, at site A, requests a resource
from process Pj, at site B, a request message with
timestamp TS is sent.

❒ The edge Pi → Pj with the label TS is inserted in
the local wait-for of A. The edge is inserted in the
local wait-for graph of B only if B has received the
request message and cannot immediately grant the
requested resource.

-87

The Algorithm

1. The controller sends an initiating message to each
site in the system.

2. On receiving this message, a site sends its local
wait-for graph to the coordinator.

3. When the controller has received a reply from
each site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for every

process in the system.
(b) The graph has an edge Pi → Pj if and only if (1) there is

an edge Pi → Pj in one of the wait-for graphs, or (2) an
edge Pi → Pj with some label TS appears in more than
one wait-for graph.

If the constructed graph contains a cycle ⇒ deadlock.

-88

Local and Global Wait-For
Graphs

-89

Distributed Deadlock Detection

-90

Augmented Local Wait-For
Graphs

16

-91

Augmented Local Wait-For Graph
in Site S2

-92

