
1

-1

14: Memory Management

Last Modified:
10/31/2002 12:30:51 AM

-2

Limited DRAM

❒ With paging we could probably “function” with just
one resident memory page for each process (and
its Master Page Table)

❒ But reading and writing memory pages to disk is
expensive so we don’t want to do it very often

❒ So how much system DRAM do we really need for
each process?

❍ Do we give each process the same amount of memory?
❍ Do they all need the same amount?
❍ Do we have enough system DRAM to support all the

processes we want to run?(We know we can do better
than 4 GB for each one but to avoid constant paging how
many do we need)

❒ Two ways to answer – practical and theoretical

-3

How much memory do processes
need? (Practical Answer)

❒ top
❒ SIZE vs RES

❍ Absolute?
❍ Relative?

❒ Total real
memory

❍ Free
❍ Swap in use

-4

Windows Task Manager

-5

Observations About Actual
Memory Usage
❒ Varies significantly per process
❒ Are any processes paging “too heavily”?

❍ Could we tell just from these stats? How would
we know?

-6

How much memory do processes
need? (Theoretical Answer)
❒ “Working set” of a process is the set of

virtual memory pages being actively used
by the process.

❒ Define a working set over an interval
❍ WSP(w)= {pages P accessed in the last w

accesses}
❍ If w = total number of P accesses P makes then

WSP(w)= every virtual memory page touched by
P

❒ Small working set = accesses of a process
have high degree of locality

2

-7

Changes in Working Set

❒ Working set changes over the life of the process
❍ Ex. At first all the initialization code is in the working

set of a process but after some time if won’t be any
longer

❒ Intuitively, you need to keep the working set of a
process in memory or the OS will constantly be
bring pages on and off of disk

❒ Normally when we ask how much memory a given
program needs to run, the answer is either its
average or maximum working set (depending on
how conservative you want to make your estimate)

-8

Demand Paging

❒ When a process first starts up
❍ It has brand new page table with all PTE valid bits set to

false because no pages yet mapped to physical memory
❍ As process fetches instructions and accesses data, there

will be “page faults” for each page touched
❍ Only pages that are needed or “demanded” by the

process will be brought in from disk
❒ Eventually may bring so many pages in that must

choose some for eviction
❍ Once evicted, if access, will once again demand page in

from disk

-9

Demand Paging

❒ When working set changes (like at the beginning
of a process), you will get disk I/O – really no way
around that!

❒ BUT if most memory accesses result in disk I/O
the process will run *painfully* slow

❒ Virtual memory may be invisible from a functional
standpoint but certainly not from a performance
one

❍ There is a performance cliff and if you step off of it you
are going to know

❍ Remember building systems with cliffs is not good

-10

Prepaging?

❒ Anticipate fault before it happens and
prefetch the data

❒ Overlap fetch with computation
❒ Can be hard to predict and if predict wrong

evict something useful in exchange
❒ Programmers can give hints

❍ vm_advise

-11

Thrashing

❒ Thrashing – spending all your time moving
pages to and from disk and little time
actually making progress

❒ System is overcommitted
❒ People get like this ☺

-12

Avoiding Paging

❒ Given the cost of paging, we want to make
it as infrequent as we can

❒ Function of:
❍ Degree of locality in the application (size of the

working set over time)
❍ Amount of physical memory
❍ Page replacement policy

❒ The OS can only control the replacement
policy

3

-13

Goals of Replacement Policy

❒ Performance
❍ Best to evict a page that will never be accessed again if

possible
❍ If not possible, evict page that won’t be used for the

longest time
❍ How can we best predict this?

❒ Fairness
❍ When OS divides up the available memory among

processes, what is a fair way to do that?
• Same amount to everyone? Well some processes may not

need that amount for their working set while others are
paging to disk constantly with that amount of memory

• Give each process its working set?
❍ As long as enough memory for each process to have its

working set resident then everyone is happy
• If not how do we resolve the conflict? -14

Page replacement algorithms

❒ Remember all the different CPU scheduling
algorithms the OS could use to choose the
next job to run

❒ Similarly, there are many different
algorithms for picking which page to kick
out when you have to bring in a new page
and there is no free DRAM left

❒ Goal?
❍ Reduce the overall system page fault rate?
❍ Balance page fault rates among processes?
❍ Minimize page faults for high priority jobs?

-15

Belady’s Algorithm

❒ Evict the page that won’t be used again for
the longest time

❒ Much like ShortestJobFirst!
❒ Has provably optimal lowest page fault rate
❒ Difficult to predict which page won’t be

used for a while
❍ Even if not practical can use it to compare

other algorithms too

-16

First-In-First-Out (FIFO)

❒ Evict the page that was inserted the longest time
ago

❍ When page in put on tail of list
❍ Evict head of list

❒ Is is always (usually) the case that the thing
accessed the longest time ago will not be accessed
for a long time?

❒ What about things accessed all the time!
❒ FIFO suffers an interesting anomaly (Belady’s

Anomaly)
❍ It is possible to increase the page fault rate by

increasing the amount of available memory

-17

Least-Recently Used (LRU)

❒ Idea: the past is a good predictor of the future
❍ Page that we haven’t used for the longest time likely not

to be used again for longest time
❍ Is past a good predictor

• Generally yes
• Can be exactly the wrong thing! Consider streaming access

❒ To do this requires keeping a history of past
accesses

❍ To be exact LRU would need to save a timestamp on each
access (I.e. write the PTE on each access!)

❍ Too expensive!

-18

Approximating LRU

❒ Remember the reference bit in the PTE
❍ Set if read or written

❒ At some regular interval (much much less often
than for each access) clear all the reference bits

❍ Only PTE without the ref bit clear are eligible for
eviction

❒ More than 1 bit of state?
❍ Associate some number of counter bits
❍ At regular interval, if ref bit is 0 increment counter and

if ref bit is 1 then zero counter
❍ Counter tells you # intervals since the last reference
❍ More bits you give to counter = more accurate

approximation

4

-19

LRU Clock

❒ Also called Second Chance
❒ Logically put all physical page frames in a

circle (clock)
❒ Maintain a pointer to a current page (clock

hand)
❒ When need to evict a page, look at current

page
❍ If ref bit off then evict
❍ If ref bit on clear it and move on (second

chance)

-20

LRU Clock (con’t)

❒ Arm moves as quickly as eviction are
requested

❒ If evictions rarely requested then arm
moves slowly and pages have a long time to
prove their worth by being referenced

❒ If evictions frequently requested then arm
moves fast and little time before the
second chance is up

-21

Fairness?

❒ All the replacement policies we’ve looked at
so far just try to pick the page to evict
regardless of which process the page
belongs to

❒ What if demand page in from one process
causes the eviction of another processes
page? Is that fair?

❒ On the other hand is it fair for one
process to have 2 times their working set
while another process has ½ their working
set and is paging heavily?

-22

Fixed vs Variable Space

❒ Fixed space algorithms
❍ Give each process a limit of pages it can use
❍ When it reaches its limit, it replaces LRU or

FIFO or whatever from its pages
❍ May be more natural to give process a say in

the replacement policy used for its pages
❒ Variable space algorithms

❍ Processes set of pages grows and shrinks
❍ One process can ruin it for the rest but

opportunity to make globally better decisions

-23

Use Working Set

❒ Could ask each process to inform the OS
of the size of its working set

❒ OS only allow a process to start if it can
allocate the complete working set

❒ How easy for processes to report this?

-24

Page Fault Frequency (PFF)

❒ PFF is a variable-space algorithm that tries
to determine the working set size
dynamically

❒ Monitor page fault rage for each process
❒ If fault rate is above a given threshold,

give it more memory
❒ If fault rate is below threshhold, take

away memory
❒ Constant adjustment? Dampening factor so

only changes occasionally

5

-25

Best page replacement?

❒ Of course it depends ☺
❒ Interestingly if have too much memory it

doesn’t matter
❍ anything you do will be ok (overprovisioning)

❒ Also doesn’t matter if have too little
memory
❍ Thrashing and nothing you can do to stop it

(overcommitted)
❒ So much does it cost just to overprovision?

-26

Summary

❒ Demand paging
❍ Start with no physical memory pages mapped and load

them in on demand
❒ Page replacement Algorithms

❍ Belady – optimal but unrealizable
❍ FIFO – replace page loaded earliest
❍ LRU – replace page referenced earliest
❍ Working Set – keep set of pages in memory that induces

minimal fault rate (need program specification)
❍ PFF – Grow/shrink page set as a function of fault rate

❒ Fairness – globally optimal replacement vs
protecting processes from each other?

-27

Outtakes

❒ Shared memory machines
❒ Expanding address spaces 16 to 32 bit
❒ Inverted page tables
❒ Multics

