14: Memory Management

Last Modified:
10/31/2002 12:30:51 AM

Limited DRAM

[m}

With paging we could probably "function” with just
one resident memory page for each process (and
its Master Page Table)

But reading and writing memory pages to disk is
expensive so we don't want to do it very often

So how much system DRAM do we really need for
each process?

0 Do we give each process the same amount of memory?

0 Do they all need the same amount?

0 Do we have enough system DRAM to support all the
processes we want to run?(We know we can do better
than 4 GB for each one but to avoid constant paging how
many do we need)

Two ways to answer - practical and theoretical

O

[m}

[m]

How much memory do processes
need? (Practical Answer)

=85 0 top
0 SIZEvsRES

| 0 Absolute?

0 Relative?
0 Total real

memory

0 Free

0 Swap in use

Corrted 1s okl S E Eomeremon oY Cpber: e (L4 B0

Windows Task Manager

] wmboms Task Mamsper alni | [EEE— 3
T T

Apanors hoctases |buctimarce |

ppien | Prowises Perfmaree |

L P s oty

I e 1 ol oul ounee| Mestsegs]|
Brstnn ke romeas : 0 sem T

2 Tots 3
I = T
B Procass s 130 rersad)

=L

Pomwmes: I CFUUnage) 7% Pl inage: E3000 | SR Prome 5 Clnagn T e e (7N | Z3001

Observations About Actual
Memory Usage
0 Varies significantly per process

O Are any processes paging "too heavily"?

0 Could we tell just from these stats? How would
we know?

How much memory do processes
need? (Theoretical Answer)

0 “"Working set"” of a process is the set of
virtual memory pages being actively used
by the process.

U Define a working set over an interval
0 WSp(w)= {pages P accessed in the last w
accesses}
I If w = total number of P accesses P makes then
WSp(w)= every virtual memory page touched by
P

0 Small working set = accesses of a process
have high degree of locality

Changes in Working Set

0 Working set changes over the life of the process
0 Ex. At first all the initialization code is in the working
set of a process but after some time if won't be any
longer
O Intuitively, you need to keep the working set of a
process in memory or the OS will constantly be
bring pages on and of f of disk
0 Normally when we ask how much memory a given
program needs fo run, the answer is either its
average or maximum working set (depending on
how conservative you want to make your estimate)

Demand Paging

0 When a process first starts up
0 It has brand new page table with all PTE valid bits set to
false because no pages yet mapped to physical memory

0 As process fetches instructions and accesses data, there
will be “page faults” for each page touched

0 Only pages that are needed or “"demanded” by the
process will be brought in from disk
0 Eventually may bring so many pages in that must
choose some for eviction

0 Once evicted, if access, will once again demand page in
from disk

Demand Paging

0 When working set changes (like at the beginning
of a process), you will get disk I/O - really no way
around that!

0 BUT if most memory accesses result in disk I/0
the process will run *painfully* slow

0 Virtual memory may be invisible from a functional
standpoint but certainly not from a performance
one

0 There is a performance cliff and if you step off of it you
are going to know

0 Remember building systems with cliffs is not good

Prepaging?

O Anticipate fault before it happens and
prefetch the data

0 Overlap fetch with computation

0 Can be hard to predict and if predict wrong
evict something useful in exchange

U Programmers can give hints
0 vm_advise

Thrashing

0 Thrashing - spending all your time moving
pages to and from disk and little time
actually making progress

O System is overcommitted

O People get like this ©

Avoiding Paging

O Given the cost of paging, we want to make
it as infrequent as we can
O Function of:

0 Degree of locality in the application (size of the
working set over time)

0 Amount of physical memory
0 Page replacement policy

0 The OS can only control the replacement
policy

Goals of Replacement Policy

0 Performance
0 Best to evict a page that will never be accessed again if
possible
0 If not possible, evict page that won't be used for the
longest time
0 How can we best predict this?
O Fairness
0 When OS divides up the available memory among
processes, what is a fair way to do that?

+ Same amount to everyone? Well some processes may not
need that amount for their working set while others are
paging to disk constantly with that amount of memory

+ Give each process its working set?

0 As long as enough memory for each process to have its
working set resident then everyone is happy

+ If not how do we resolve the conflict?

Page replacement algorithms

0 Remember all the different CPU scheduling
algorithms the OS could use to choose the
next job fo run

O Similarly, there are many different
algorithms for picking which page to kick
out when you have to bring in a new page
and there is no free DRAM left

0 Goal?

I Reduce the overall system page fault rate?
0 Balance page fault rates among processes?
0 Minimize page faults for high priority jobs?

Belady's Algorithm

0 Evict the page that won't be used again for
the longest time

0 Much like ShortestJobFirst!

0 Has provably optimal lowest page fault rate

0 Difficult to predict which page won't be
used for a while

0 Even if not practical can use it to compare
other algorithms too

First-In-First-Out (FIFO)

0 Evict the page that was inserted the longest time
ago
0 When page in put on tail of list
0 Evict head of list
0 Is is always (usually) the case that the thing
accessed the longest time ago will not be accessed
for a long time?
0 What about things accessed all the time!
0 FIFO suffers an interesting anomaly (Belady's
Anomaly)

0 It is possible to increase the page fault rate by
increasing the amount of available memory

Least-Recently Used (LRU)

0 Idea: the past is a good predictor of the future

0 Page that we haven't used for the longest time likely not
to be used again for longest time

0 Is past a good predictor
+ Generally yes
+ Can be exactly the wrong thing! Consider streaming access
0 To do this requires keeping a history of past
accesses

0 To be exact LRU would need to save a timestamp on each
access (I.e. write the PTE on each access!)

0 Too expensivel

Approximating LRU

0 Remember the reference bit in the PTE
0 Set if read or written
0 At some regular interval (much much less often
than for each access) clear all the reference bits
0 Only PTE without the ref bit clear are eligible for
eviction
O More than 1 bit of state?
0 Associate some number of counter bits
At regular interval, if ref bit is O increment counter and
if ref bit is 1 then zero counter
Counter tells you # intervals since the last reference
More bits you give to counter = more accurate
approximation

o

o o

LRU Clock

O Also called Second Chance

O Logically put all physical page frames in a
circle (clock)

O Maintain a pointer to a current page (clock
hand)

0 When need to evict a page, look at current
page
0 If ref bit off then evict

0 If ref bit on clear it and move on (second
chance)

LRU Clock (con't)

O Arm moves as quickly as eviction are
requested

O If evictions rarely requested then arm
moves slowly and pages have a long time to
prove their worth by being referenced

O If evictions frequently requested then arm
moves fast and little time before the
second chance is up

Fairness?

0 All the replacement policies we've looked at
so far f'us’r try to pick the page to evict
r‘e?ar‘d ess of which process the page
be

ongs to

0 What if demand page in from one process
causes the eviction of another processes
page? Is that fair?

0 On the other hand is it fair for one
process to have 2 times their working set
while another process has 3 their working
set and is paging heavily?

Fixed vs Variable Space

0 Fixed space algorithms
0 Give each process a limit of pages it can use

| When it reaches its limit, it replaces LRU or
FIFO or whatever from its pages

I May be more natural o give process a say in
the replacement policy used for its pages
U Variable space algorithms
0 Processes set of pages grows and shrinks

0 One process can ruin it for the rest but
opportunity o make globally better decisions

Use Working Set

0 Could ask each process to inform the OS
of the size of its working set

0 OS only allow a process to start if it can
allocate the complete working set

0 How easy for processes to report this?

Page Fault Frequency (PFF)

U PFF is a variable-space algorithm that tries
to determine the working seft size
dynamically

O Monitor page fault rage for each process

0 If fault rate is above a given threshold,
give it more memory

0 If fault rate is below threshhold, take
away memory

0 Constant adjustment? Dampening factor so
only changes occasionally

Best page replacement?

0 Of course it depends ©

O Interestingly if have too much memory it
doesn't matter
0 anything you do will be ok (overprovisioning)

O Also doesn't matter if have too little
memory

0 Thrashing and nothing you can do to stop it
(overcommitted)

0 So much does it cost just to overprovision?

Summary

0 Demand paging

]

Start with no physical memory pages mapped and load
them in on demand

0 Page replacement Algorithms

]
]
o
o

u]

Belady - optimal but unrealizable
FIFO - replace page loaded earliest
LRU - replace page referenced earliest

Working Set - keep set of pages in memory that induces
minimal fault rate (need program specification)

PFF - Grow/shrink page set as a function of fault rate

O Fairness - globally optimal replacement vs
protecting processes from each other?

Outtakes

0 Shared memory machines

0 Expanding address spaces 16 to 32 bit
O Inverted page tables

O Multics

