9: Transactions

Last Modified:
10/8/2002 9:39:59 PM

Definition

0 A transaction is a collection of instructions (or
operations) that perform a single logical function.

0 Customer buys a car

0 MerchantsInventory--

o Customer Bank Account -=PRICE

0 Merchant Bank Account+=PRICE

0 CustomerHistory++

[n}

All of these things should happen indivisibly - all
or nothing? Even in the presence of failures and
multiple concurrently executing transactions!

How do you make that happen when it is physically
impossible to change all these things at the same
time?

[m]

[m]

Commit/Abort

0 Introduce concept of commit (or save) at
the end of a transaction

0 Until commit, all the individual operations
that make up the transaction are pending

0 At any point before the transaction is
committed, it might also be aborted

0 If a transaction is aborted, the system will
undo or rollback the effects of any
individual operations which have completed

Database Systems

0 Manage transactions (much like OSes manage
processes)

0 Ensure the correct synchronization and the saving
of modified data on transaction commit

0 Databases and OSes have a lot in common!

0 Databases get a better roadmap

0 SQL queries provide up front map of transactions data
access intentions

0 General processes change pattern based on user input
and are not as structured in their data access
specifications

0 Some OSes provide APIs for programs to declare their
intentions

ACID properties of
Transactions
0 (A)tomicity

0 Happen as a unit - all of nothing
0 (C)onsistency

0 Integrity constraints on data are maintained
0 (I)solation

0 Other transactions cannot see or interfere with the
intermediate stages of a transaction

0 (D)urability
0 Committed changes are reflected in the data
permanently even in the face of failures in the system
O Atomicity, consistency and isolation are all the
result of synchronization among transactions like
the synchronization we have been studying
between processes

0 How can we guarantee that committed
changes are remembered even in the face
of failures?

0 Remembering = saving the data to some
kind of storage device

Types of Storage

O Volatile Storage
0 DRAM memory loses its contents when the power is
removed
0 Non-Volatile Storage

0 Hard disks, floppy disks, CDs, tape drives are all
examples of storage that does not lose its contents when
power is removed

0 Stable Storage
o Still non-volatile storage can lose its contents (magnets,
microwave ovens, sledge hammers,..)
0 “Stable storage” implies that the data has been backed
up to multiple locations such that it is never lost

So what does this mean?

U Processes that run on in a computer system
write the data they compute into registers,
then into caches, then into DRAM

0 These are all volatile! (but they are also fast)

0 To survive most common system crashes,

data must be written from DRAM onto disk
0 This in non-volatile but much slower than DRAM

0 To survive “all" crashes, the data must be
duplicated to an of f-site server or written
to tape or (how paranoid are you/how
important is your data?)

ACID?

0 So how are we going to guarantee that
transactions fulfill all the ACID properties

0 Synchronize data access among multiple
transactions

0 Make sure that before commit, all the changes
are saved to at least non-volatile storage

0 Make sure that before commit we are able o
undo any intermediate changes if an abort is
requested

0 How?

Log-Based Recovery

O

While running a transaction, do not make changes
to the real data; instead make notes in a log about
what *would* change

Anytime before commit can just purge the records
from the log

At commit time, write a “commit” record in the log
so that even if you crash immediately after that
you will find these notes on non-volatile storage
after rebooting

Only after commit, process these notes into real
changes to the data

[m]

[m]

[m}

Log records

O Transaction Name or Id

0 Is this part of a commit or an abort?
O Data Item Name

0 What will change?

0 Old Value
0 New Value

Recovery After Crash

U Read log

O If see operations for a transaction but not
transaction commit, then undo those
operations

0 If see the commit, then redo the
transaction to make sure that its affects
are durable

0 2 phases - look for all committed then go
back and look for all their intermediate
operations

Making recovery faster

0 Reading the whole log can be quite time

consuming
0 If log is long then transactions at beginning are
likely to already have been incorporated.

0 Therefore, the system can periodically
write outs its entire state and then discard
the log to that point

O This is called a checkpoint

0 In the case of recovery, the system just
needs to read in the last checkpoint and
process the log that came after it

Synchronization

0 Just like the execution of our critical sections

0 The final state of multiple transactions running
must the same as if they ran one after another in
isolation

0 We could just have all transactions share a lock such that
only one runs at a time
0 Does that sound like a good idea for some huge
transaction processing system (like airline reservations
say?)
0 We would like as much concurrency among
transactions as possible

Serializability

0 Serial execution of transaction A and B
Op 1in transaction A
Op 2 in transaction A

u]

u]

O ..

0 Op N in ftransaction A

0 Op 1in transaction B

0 Op 2 in transaction B

o ..

o Op N in fransaction B

0 All of A before any of B

0 Note: Does not apply outcome of A then B is same
and B then Al

Serializability

O Certainly strictly serial access provides
atomicity, consistency and isolation
0 One lock and each transaction must hold it for

the whole time

0 Relax this by allowing the overlap of non-
conflicting operations

0 Also allow possibly conflicting operations to
proceed in parallel and then abort one only
if detect conflict

Timestamp-Based Protocols

0 Method for selecting the order among
conflicting transactions

0 Associate with each transaction a number
which is the timestamp or clock value when
the ftransaction begins executing

0 Associate with each data item the largest
timestamp of any transaction that wrote
the item and another the largest
timestamp of a transaction reading the
item

Timestamp-Ordering

O If timestamp of transaction wanting to
read data < write timestamp on the data
then it would have needed to read a value
already overwritten so abort the reading
transaction

O If timestamp if transaction wanting to
read data < read timestamp on the data
then the last read would be invalid but it is
commited so abort the writing transaction

U Ability to abort is cruciall

Outtakes

Is logging expensive?

0 Yes and ho

| Yes because it requires two writes to
nonvolatile storage (disk)

0 Not necessarily because each of these two
writes can be done more efficiently than the
original

- Logging is sequential
+ Playing the log can be reordered for efficient disk
access

Deadlock

0 We'd also like to avoid deadlock among
transactions

0 Common solution here is breaking “hold and wait"

0 Two phase locking approach

0 Generalization of getting all the locks you need at once
then just release them as you no longer need them

0 Growing phase - transaction may obtain locks but not
release any

« Violates hold and wait?

0 Shrinking phase - transaction may release locks but not

obtain any

