5: CPU Scheduling

Last Modified:
9/17/2002 1:14:44 PM

Scheduling Policy

O We've talked about the context switch
mechanism
0 How we change which process or thread is
executing on the CPU
0 Today, we will talk about scheduling policies

0 How do we choose which process or thread to
execute next

0 Unit of scheduling = process or thread

Scheduler

0 Scheduler = the module that moves jobs
from queue to queue

O Scheduler typically runs when:

0 A process/thread blocks on a request
(transitions from running to waiting)

0 A timer inferrupt occurs

O A new process/thread is created or is
terminated

Scheduling Algorithm

0 The scheduling algorithm examines the set of
candidate processes/threads and chooses one to
execute

0 Scheduling algorithms can have different goals

0 Maximize CPU utilization
0 Maximize throughput (#jobs/time)

0 Minimize average turnaround time
(Avg(EndTime - StartTime))

0 Minimize response time
0 Recall: Batch systems have which goal? Interative
systems have which goal?

Starvation

0 Starvation = process is prevented from
making progress towards completion
because another process has a resource
that it needs

O Scheduling policies should try to prevent
starvation

0 E.g. Even low priority processes should
eventually get some time on the CPU

Brainstorm

0 What are some different ways to schedule
access to a resource?

o0 First Come First Serve
* Many services humans use are like this?

0 Prefer Short Jobs
+ Express lane at the grocery store

0 Important Jobs First
+ Order you do your TODO list? Maybe round robin?

O Now what about scheduling processes?

Process Model

O Think of a process/
thread as an entity that
alternates between two
states: using the CPU and
waiting for I/0 (not a

bad model)

0 Most "CPU bursts" are
short

First Come First Serve (FCFS)

0 Also called First In First Out (FIFO)
O Jobs scheduled in the order they arrive

0 When used, tends fo be non-preemptive

0 If you get there first, you get all the resource
until you are done

0 “"Done" can mean end of CPU burst or
completion of job
0 Sounds fair
o All jobs treated equally

0 No starvation (except for infinite loops that
prevent completion of a job)

Problems with FCFS/FIFO

O Leads to poor overlap of I/0O and CPU

0 Convoy effect: while job with long CPU burst
executes, other jobs complete their I/0 and
the I/0 devices sit idle even though they are
the "bottleneck” resource and should be kept as
busy as possible

O Also, small jobs wait behind long running
Jjobs (even grocery stores know that)
0 Results in high average turn-around time

Shortest Job First (SJF)

O So if we don't want short running jobs
waiting behind long running jobs, why don't
we let the job with the shortest CPU burst
go next

0 Can prove that this results in the minimum
(optimal) average waiting time
O Can be preemptive or non-preemptive

0 Preemptive one called shortest-remaining-time
first

Problems with SJF

O First, how do you know which job will have
the shortest CPU burst or shortest running
time?

| Can guess based on history but not guaranteed

O Bigger problem is that it can lead to

starvation for long-running jobs

0 If you never got to the head of the grocery
queue because someone with a few items was
always cutting in front of you

Most Important Job First

O Priority scheduling

0 Assign priorities to jobs and run the job with
the highest priority next

0 Can be preemptive such that as soon as high
priority job arrives it get the CPU
0 Can implement with multiple “priority
queues"” instead of single ready queue
0 Run all jobs on highest priority queue first

Problems with Priority
Scheduling

O First, how do we decide on priorities?

0 We express SJF in a priority scheduling model
- also a million other choices

0 How do we schedule CPU between
processes with the same priority?

O Like SJF, all priority scheduling can lead fo
starvation

0 What if highest priority process needs
resource held by lowest priority process?

Priority Inversion

O Problem: Lowest priority process holds a
lock that highest priority process needs.
Medium priority processes run and low
priority process never gets a chance to
release lock.

O Solution: Low priority process “inherits”
priority of the highest priority process
until it releases the lock and then reverts
to original priority.

Dealing with Starvation

0 FCFS has some serious drawbacks and we
really do like to be able to express
priorities

0 What can we do to prevent starvation?

) Increase priority the longer a job waits

o Eventually any job will accumulate enough
“waiting points” to be scheduled

Interactive Systems?

O Do any of these sound like a good choice
for an interactive system?

0 How did we describe scheduling on
interactive systems?
0 Time slices
0 Each job given a its share of the CPU in turn
O Called Round Robin (RR) scheduling

0 No starvation!

Problems With RR

O First, how do you choose the time
quantum?

0 If too small, then spend all your time context
switching and very little tfime making progress
0 If too large, then it will be a while between the
times a given job is scheduled leading to poor
response time
) RR with large time slice => FIFO

0 No way to express priorities of jobs

| Aren't there some jobs that should get a longer
time slice?

Best of All Worlds?

0 Most real life scheduling algorithms combine
elements of several of these basic schemes

O Examples:

Have multiple queues

Use different algorithms within different queues
Use different algorithm between queues

Have algorithms for moving jobs from one queue to
another

Have different time slices for each queue
0 Where do new jobs enter the system

O
O
o
o

o

Multi-level Feedback Queues
MLF

O Multiple queues representing different
types of jobs
) Example: I/0 bound, CPU bound
I Queues have different priorities
0 Jobs can move between queues based on
execution history
0 If any job can be guaranteed to eventually
reach the top priority queue given enough
waiting time, them MLFQ is starvation free

Typical UNIX Scheduler

0 MLFQ
0 3-4 classes spanning >100 priority levels
0 Timesharing, Interactive, System, Real-time (highest)

0 Processes with highest priority always run first;
Processes of same priority scheduled with Round
Robin

0 Reward interactive behavior by increasing priority
if process blocks before end of time slice granted

0 Punish CPU hogs by decreasing priority of process
uses the entire quantum

priocntl

> priocntl -1
CONFIGURED CLASSES

SYS (System Class)

TS (Time Sharing)
Configured TS User Priority Range: -60 through 60

IA (Interactive)
Configured IA User Priority Range: -60 through 60

RT (Real Time)
Maximum Configured RT Priority: 59

21

priocntl

:~> ps
PID TTY TIME CMD
29373 pts/60 0:00 tcsh
29437 pts/60 0:11 pine
:~> priocntl -d 29373
TIME SHARING PROCESSES:
PID TSUPRILIM TSUPRI
29373 -30 -30
:~> priocntl -d 29437
TIME SHARING PROCESSES:
PID TSUPRILIM TSUPRI
29437 -57 -57
:~> priocntl -d 1
TIME SHARING PROCESSES:
PID TSUPRILIM TSUPRI
1 0 0

nice

0 Users can lower the priority of their
process with nice

0 Root user can raise or lower the priority of
processes

Some Special Cases

Real Time Scheduling

0 Real time processes have timing constraints
0 Expressed as deadlines or rate requirements

0 Common Real Time Scheduling Algorithms
0 Rate Monotonic
* Priority = 1/RequiredRate
+ Things that need fo be scheduled more often have highest
priority
0 Earliest Deadline First
+ Schedule the job with the earliest deadline
+ Scheduling homework? ©
0 To provide service guarantees, neither algorithm
is sufficient
0 Need admission control so that system can refuse to
accept a job if it cannot honor its constraints

25

Multiprocessor Scheduling

O Can either schedule each processor
separately or together
0 One line all feeding multiple tellers or one line
for each teller
O Some issues
0 Want to schedule the same process again on
the same processor (processor affinity)
+ Why? Caches
0 Want to schedule cooperating
processes/threads together (gang scheduling)

+ Why? Don't block when need to communicate with
each other

226

Algorithm Evaluation:
Deterministic Modeling

0 Deterministic Modeling
0 Specifies algorithm *and* workload
0 Example :
0 Process 1 arrives at time 1 and has a running
time of 10 and a priority of 2
0 Process 2 arrives at time 5, has a running time
of 2 and a priority of 1
O..
0 What is the average waiting time if we use
preemptive priority scheduling with FIFO
among processes of the same priority?

-27

Algorithm Evaluation: Queueing
Models

0 Distribution of CPU and I/0 bursts, arrival
times, service times are all modeled as a
probability distribution

0 Mathematical analysis of these systems

O To make analysis tractable, model as well
behaved but unrealistic distributions

-28

Algorithm Evaluation:
Simulation

0 Implement a scheduler as a user process
O Drive scheduler with a workload that is
either
) randomly chosen according to some distribution
) measured on a real system and replayed
0 Simulations can be just as complex as
actual implementations

0 At some level of effort, should just implement
in real system and test with “real” workloads

0 What is your benchmark/ common case?

29

One last point: Kernel vs User

Level Threads

0 Recall: With kernel level threads, kernel
chooses among all possible threads to
schedule; with user level threads, kernel
schedules the process and the user level
thread package schedule the threads

0 User-level threads have benefit of fast
context switch at user level

O Kernel-level threads have benefit of global
knowledge of scheduling choices and has
more flexibility in assigning priorities to
individual threads

