
1

-1

5: CPU Scheduling

Last Modified:
9/17/2002 1:14:44 PM

-2

Scheduling Policy

❒ We’ve talked about the context switch
mechanism
❍ How we change which process or thread is

executing on the CPU
❒ Today, we will talk about scheduling policies

❍ How do we choose which process or thread to
execute next

❍ Unit of scheduling = process or thread

-3

Scheduler

❒ Scheduler = the module that moves jobs
from queue to queue

❒ Scheduler typically runs when:
❍ A process/thread blocks on a request

(transitions from running to waiting)
❍ A timer interrupt occurs
❍ A new process/thread is created or is

terminated

-4

Scheduling Algorithm

❒ The scheduling algorithm examines the set of
candidate processes/threads and chooses one to
execute

❒ Scheduling algorithms can have different goals
❍ Maximize CPU utilization
❍ Maximize throughput (#jobs/time)
❍ Minimize average turnaround time

(Avg(EndTime – StartTime))
❍ Minimize response time

❒ Recall: Batch systems have which goal? Interative
systems have which goal?

2

-5

Starvation

❒ Starvation = process is prevented from
making progress towards completion
because another process has a resource
that it needs

❒ Scheduling policies should try to prevent
starvation
❍ E.g. Even low priority processes should

eventually get some time on the CPU

-6

Brainstorm

❒ What are some different ways to schedule
access to a resource?
❍ First Come First Serve

• Many services humans use are like this?
❍ Prefer Short Jobs

• Express lane at the grocery store
❍ Important Jobs First

• Order you do your TODO list? Maybe round robin?

❒ Now what about scheduling processes?

-7

Process Model
❒ Think of a process/

thread as an entity that
alternates between two
states: using the CPU and
waiting for I/O (not a
bad model)

❒ Most “CPU bursts” are
short

-8

First Come First Serve (FCFS)

❒ Also called First In First Out (FIFO)
❒ Jobs scheduled in the order they arrive
❒ When used, tends to be non-preemptive

❍ If you get there first, you get all the resource
until you are done

❍ “Done” can mean end of CPU burst or
completion of job

❒ Sounds fair
❍ All jobs treated equally
❍ No starvation (except for infinite loops that

prevent completion of a job)

3

-9

Problems with FCFS/FIFO

❒ Leads to poor overlap of I/O and CPU
❍ Convoy effect: while job with long CPU burst

executes, other jobs complete their I/O and
the I/O devices sit idle even though they are
the “bottleneck” resource and should be kept as
busy as possible

❒ Also, small jobs wait behind long running
jobs (even grocery stores know that)
❍ Results in high average turn-around time

-10

Shortest Job First (SJF)

❒ So if we don’t want short running jobs
waiting behind long running jobs, why don’t
we let the job with the shortest CPU burst
go next
❍ Can prove that this results in the minimum

(optimal) average waiting time
❒ Can be preemptive or non-preemptive

❍ Preemptive one called shortest-remaining-time
first

-11

Problems with SJF

❒ First, how do you know which job will have
the shortest CPU burst or shortest running
time?
❍ Can guess based on history but not guaranteed

❒ Bigger problem is that it can lead to
starvation for long-running jobs
❍ If you never got to the head of the grocery

queue because someone with a few items was
always cutting in front of you

-12

Most Important Job First

❒ Priority scheduling
❍ Assign priorities to jobs and run the job with

the highest priority next
❍ Can be preemptive such that as soon as high

priority job arrives it get the CPU
❒ Can implement with multiple “priority

queues” instead of single ready queue
❍ Run all jobs on highest priority queue first

4

-13

Problems with Priority
Scheduling
❒ First, how do we decide on priorities?

❍ We express SJF in a priority scheduling model
– also a million other choices

❒ How do we schedule CPU between
processes with the same priority?

❒ Like SJF, all priority scheduling can lead to
starvation

❒ What if highest priority process needs
resource held by lowest priority process?

-14

Priority Inversion

❒ Problem: Lowest priority process holds a
lock that highest priority process needs.
Medium priority processes run and low
priority process never gets a chance to
release lock.

❒ Solution: Low priority process “inherits”
priority of the highest priority process
until it releases the lock and then reverts
to original priority.

-15

Dealing with Starvation

❒ FCFS has some serious drawbacks and we
really do like to be able to express
priorities

❒ What can we do to prevent starvation?
❍ Increase priority the longer a job waits
❍ Eventually any job will accumulate enough

“waiting points” to be scheduled

-16

Interactive Systems?

❒ Do any of these sound like a good choice
for an interactive system?

❒ How did we describe scheduling on
interactive systems?
❍ Time slices
❍ Each job given a its share of the CPU in turn
❍ Called Round Robin (RR) scheduling

❒ No starvation!

5

-17

Problems With RR

❒ First, how do you choose the time
quantum?
❍ If too small, then spend all your time context

switching and very little time making progress
❍ If too large, then it will be a while between the

times a given job is scheduled leading to poor
response time

❍ RR with large time slice => FIFO
❒ No way to express priorities of jobs

❍ Aren’t there some jobs that should get a longer
time slice?

-18

Best of All Worlds?

❒ Most real life scheduling algorithms combine
elements of several of these basic schemes

❒ Examples:
❍ Have multiple queues
❍ Use different algorithms within different queues
❍ Use different algorithm between queues
❍ Have algorithms for moving jobs from one queue to

another
❍ Have different time slices for each queue
❍ Where do new jobs enter the system

-19

Multi-level Feedback Queues
(MLFQ)
❒ Multiple queues representing different

types of jobs
❍ Example: I/O bound, CPU bound
❍ Queues have different priorities

❒ Jobs can move between queues based on
execution history

❒ If any job can be guaranteed to eventually
reach the top priority queue given enough
waiting time, them MLFQ is starvation free

-20

Typical UNIX Scheduler

❒ MLFQ
❍ 3-4 classes spanning >100 priority levels
❍ Timesharing, Interactive, System, Real-time (highest)

❒ Processes with highest priority always run first;
Processes of same priority scheduled with Round
Robin

❒ Reward interactive behavior by increasing priority
if process blocks before end of time slice granted

❒ Punish CPU hogs by decreasing priority of process
uses the entire quantum

6

-21

priocntl
> priocntl -l

CONFIGURED CLASSES

==================

SYS (System Class)

TS (Time Sharing)

Configured TS User Priority Range: -60 through 60

IA (Interactive)

Configured IA User Priority Range: -60 through 60

RT (Real Time)

Maximum Configured RT Priority: 59

-22

priocntl
:~> ps

PID TTY TIME CMD
29373 pts/60 0:00 tcsh
29437 pts/60 0:11 pine
:~> priocntl -d 29373
TIME SHARING PROCESSES:

PID TSUPRILIM TSUPRI
29373 -30 -30

:~> priocntl -d 29437
TIME SHARING PROCESSES:

PID TSUPRILIM TSUPRI
29437 -57 -57

:~> priocntl -d 1
TIME SHARING PROCESSES:

PID TSUPRILIM TSUPRI
1 0 0

-23

nice

❒ Users can lower the priority of their
process with nice

❒ Root user can raise or lower the priority of
processes

-24

Some Special Cases

7

-25

Real Time Scheduling

❒ Real time processes have timing constraints
❍ Expressed as deadlines or rate requirements

❒ Common Real Time Scheduling Algorithms
❍ Rate Monotonic

• Priority = 1/RequiredRate
• Things that need to be scheduled more often have highest

priority
❍ Earliest Deadline First

• Schedule the job with the earliest deadline
• Scheduling homework? ☺

❒ To provide service guarantees, neither algorithm
is sufficient

❍ Need admission control so that system can refuse to
accept a job if it cannot honor its constraints

-26

Multiprocessor Scheduling

❒ Can either schedule each processor
separately or together
❍ One line all feeding multiple tellers or one line

for each teller
❒ Some issues

❍ Want to schedule the same process again on
the same processor (processor affinity)

• Why? Caches
❍ Want to schedule cooperating

processes/threads together (gang scheduling)
• Why? Don’t block when need to communicate with

each other

-27

Algorithm Evaluation:
Deterministic Modeling
❒ Deterministic Modeling

❍ Specifies algorithm *and* workload
❒ Example :

❍ Process 1 arrives at time 1 and has a running
time of 10 and a priority of 2

❍ Process 2 arrives at time 5, has a running time
of 2 and a priority of 1

❍ …
❍ What is the average waiting time if we use

preemptive priority scheduling with FIFO
among processes of the same priority?

-28

Algorithm Evaluation: Queueing
Models
❒ Distribution of CPU and I/O bursts, arrival

times, service times are all modeled as a
probability distribution

❒ Mathematical analysis of these systems
❒ To make analysis tractable, model as well

behaved but unrealistic distributions

8

-29

Algorithm Evaluation:
Simulation
❒ Implement a scheduler as a user process
❒ Drive scheduler with a workload that is

either
❍ randomly chosen according to some distribution
❍ measured on a real system and replayed

❒ Simulations can be just as complex as
actual implementations
❍ At some level of effort, should just implement

in real system and test with “real” workloads
❍ What is your benchmark/ common case?

-30

One last point: Kernel vs User
Level Threads
❒ Recall: With kernel level threads, kernel

chooses among all possible threads to
schedule; with user level threads, kernel
schedules the process and the user level
thread package schedule the threads

❒ User-level threads have benefit of fast
context switch at user level

❒ Kernel-level threads have benefit of global
knowledge of scheduling choices and has
more flexibility in assigning priorities to
individual threads

