4. Threads

Last Modified:
9/17/2002 2:27:59 PM

Processes

0 Recall: A process includes
0 Address space (Code, Data, Heap, Stack)
0 Register values (including the PC)
0 Resources allocated to the process
*+ Memory, open files, network connections
0 Recall: how processes are created

0 Initializing the PCB and the address space (page tables)
takes a significant amount of time

0 Experiment: Time N iterations of fork or vfork
0 Recall: Type of interprocess communication
0 IPCis costly also

0 Communication must go through OS (*OS has to guard
any doors in the walls it builds around processes for their
protection”)

Problem needs > 1 independent
sequential process?

0 Some problems are hard to solve as a single
sequential process; easier to express the solution
as a collection of cooperating processes

0 Hard to write code to manage many different tasks all at
once

0 How would you write code for "make phone calls while
making dinner while doing dishes while looking through
the mail”

0 Can't be independent processes because share data (your
brain) and share resources (the kitchen and the phone)

0 Can't do them sequentially because need to make
progress on all tasks at once

0 Easier to write “algorithm” for each and when there is a
lull in one activity let the OS switch between them

0 On a multiprocessor, exploit parallelism in problem

Example: Web Server

0 Web servers listen on an incoming socket for
requests
0 Once it receives a request, it ignore listening to the
incoming socket while it services the request
O Must do both at once
0 One solution: Create a child process to handle the
request and allow the parent to return to listening
for incoming requests
0 Problem: This is inefficient because of the
address space creation (and memory usage) and
PCB initialization




Observation

O There are similarities in the process that
are spawned off to handle requests
0 They share the same code, have the same
privileges, share the same resources (html files
to return, cgi script to run, database to search,
etc.)
0 But there are differences
) Operating on different requests
) Each one will be in a different stage of the
“handle request” algorithm

Idea

O Let these tasks share the address space,
privileges and resources

O Give each their own registers (like the PC),
their own stack etc

0 Process - unit of resource allocation
(address space, privileges, resources)

0 Thread - unit of execution (PC, stack, local
variables)

Single-Threaded vs
Multithreaded Processes

e

= [onck ] [[omson ) rosses | rogns |

mutlithreadoed

Process vs Thread

O Each thread belongs to one process
0 One process may contain multiple threads
O Threads are logical unit of scheduling

U Processes are the logical unit of resource
allocation




Address Space Map For Single-
Threaded Process

Biggest Stack
Virtual (Space for local variables etc.
Address For each nested procedure call)

g
T

Statically declared variables
(Global variables)

Stack Pointer

Code «—PC
(Text Segment)

0x0000

Address Space Map For

Multithreaded Process

Biggest
Virtual
Address

0Ox0000

Thread 1 stack

SP (thread 1)

a

Thread 2 stack

SP (thread 2)

‘ a

| |

Statically declared variables
(Global variables)

Code
(Text Segment)

<« PC (thread 2)
«—— PC(thread 1)

Kernel support for threads?

0 Some OSes support the notion of multiple threads
per process and others do not

0 Even if no “"kernel threads” can build threads at
user level

0 Each "multi-threaded" program gets a single kernel in the
process

0 During its timeslice, it runs code from its various threads

0 User-level thread package schedules threads on the
kernel level process much like OS schedules processes on
the CPU

0 User-level thread switch must be programmed in
assembly (restore of values to registers, etc.)

User-level Threads

SR

=+ kernel thread

user thread




User-level threads

0 How do user level thread packages avoid having
one thread monopolize the processes time slice?
0 Solve much like OS does
0 Solution 1: Non-preemptive
0 Rely on each thread to periodically yield
0 Yield would call the scheduling function of the library
0 Solution 2: OS is to user level thread package like
hardware is to OS
0 Ask OS fo deliver a periodic timer signal
0 Use that to gain control and switch the running thread

Kernel vs User Threads

O One might think, kernel level threads are
best and only if kernel does not support
threads use user level threads

0 In fact, user level threads can be much
faster

0 Thread creation , "Context switch" between
threads, communication between threads all
done at user level

0 Procedure calls instead of system calls
(verification of all user arguments, etc.) inall
these cases!

Problems with User-level
threads

U OS does not have information about thread
activity and can make bad scheduling
decisions

0 Examples:
) If thread blocks, whole process blocks
+ Kernel threads can take overlap I/0 and computation
within a process!
0 Kernel may schedule a process with all idle
threads

Scheduler Activations

0 If have kernel level thread support available then
use kernel threads *and* user-level threads

0 Each process requests a number of kernel threads
to use for running user-level threads on

0 Kernel promises to tell user-level before it blocks
a kernel thread so user-level thread package can
choose what to do with the remaining kernel level
threads

0 User level promises to tell kernel when it no longer
needs a given kernel level thread




Thread Support

Pthreads is a user-level thread library
0 Can use multiple kernel threads to implement it on
platforms that have kernel threads
0 Java threads (extend Thread class) run by the
Java Virtual Machine

0 Kernel threads

0 Linux has kernel threads (each has its own task_struct) -
created with clone system call

0 Each user level thread maps to a single kernel thread
(Windows 95/98/NT/2000/XP, 0S/2)

0 Many user level threads can map onto many kernel level
threads like scheduler activations (Windows NT/2000
with ThreadFiber package, Solaris 2)

Pthreads Interface

0 POSIX threads, user-level library supported on
most UNIX platforms

0 Much like the similarly hamed process functions
0 thread = pthread_create(procedure)
0 pthread_exit
0 pthread_wait(thread)

Note: To use pthreads library,
#include <pthread.h>
compile with -Ipthread

Pthreads Interface (con't)

0 Pthreads support a variety of functions for
thread synchronization/coordination
| Used for coordination of threads (ITC ©) -
more on this soon!
0 Examples:
0 Condition Variables ( pthread_cond_wait,
pthread_signal)
I Mutexes(pthread_mutex_lock,
pthread_mutex_unlock)

Performance Comparison

\ A

,Processes Fork/Exit 251

Kernel Threads |Pthread_create/ |94
Pthread_join

)

User-level Pthread_create/ |4.5
Threads Pthread_join

¢ Y

In microseconds, on a 700 MHz Pentium, Linux 2.2.16, Steve Gribble, 2001.
-20




Windows Threads

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES /pThreadAlttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE /pStartAdadress,
DWORD dwCreationFilags,

LPVOID [pParameter,
DWORD dwCreationFiags,

Windows Thread
Synchronization

O Windows supports a variety of objects
that can be used for thread
synchronization

0 Examples

0 Events (CreateEvent, SetEvent, ResetEvent,
WaitForSingleObject)

0 Semaphores (CreateSemaphore,
ReleaseSemaphore, WaitForSingleObject)

LPDWORD /p Thread/a); 0 Mutexes (CreateMutex, ReleaseMutex,
WaitForSingleObject)
221 222
Warning: Threads may be
g Y QOuttakes

hazardous to your health

0 One can argue (and John Ousterhout did) that
threads are a bad idea for most purposes

0 Anything you can do with threads you can do with
an event loop
0 Remember "make phone calls while making dinner while

doing dishes while looking through the mail”

0 Ousterhout says thread programming to hard to

get right

What's Wrong With Threads?

canal all progranoners wizards
-+ Timal Basic progranmes ——————
- C progranmes —

— O+ progranmes —
Thieads progranmers
-23

O Processes that just share code but do not
communicate
0 Wasteful to duplicate
0 Other ways around this than threads

24




Example: User Interface

O Allow one thread to respond to user input
while another thread handles a long
operation

O Assign one thread to print your document,
while allowing you to continue editing

25

Benefits of Concurrency

0 Hide latency of blocking I/0 without additional
complexity
0 Without concurrency
+ Block whole process

* Manage complexity of asynchronous I/O (periodically
checking to see if it is done so can finish processing)

O Ability to use multiple processors to accomplish
the task

O Servers often use concurrency to work on multiple
requests in parallel

0 User Interfaces often designed to allow interface
to be responsive to user input while servicing long
operations

226




