3: Processes

Last Modified:
9/12/2002 1:14:25 AM

Programs vs Processes

0 A program is passive
0 Sequence of commands waiting to be run
] A process Is active

0 An instance of program being executed

0 There may be many processes running the same
program
0 Also called job or task

What makes up a process?

1 Address space

1 Code

[Data

0 Stack (nesting of procedure calls made)
1 Register values (including the PC)

1 Resources allocated to the process
0 Memory, open files, network connections

Address Space Map

Biggest t

Virtual
Address

Ox0000 |

Stack

(Space for local variables etc.
For each nested procedure call)

U

]

Statically declared variables
(Global variables)

Code
(Text Segment)

Sometimes
Reserved for

OS
Stack Pointer

PC

Sometimes
Reserved for
Error Catching

What kinds of processes are
there?

[Compute bound/ TO bound

0 Long-running/short-running

1 Interactive/batch

1 Large/small memory footprint

1 Cooperating with other processes?

0 ...

0 How does the OS categorize processes?

Process States

0 During their lifetime, processes move
between various states
1 Ready - waiting for a turn to use the CPU

0 Running - currently executing on the CPU
- How many processes can be in this state? ©
0 Waiting - Unable to use the CPU because
blocked waiting for an event
1 Terminated/Zombie - Finished executing but
state maintained until parent process retrieves
state

State Transitions

State Queues

0 OSes often maintain a number of queues of
processes that represent the state of the
processes

0 All the runnable processes are linked together
into one queue

0 All the processes blocked (or perhaps blocked
for a particular class of event) are linked
together

0 As a process changes state, it is unlinked from
one queue and linked into another

Context Switch

1 When a process is running, some of its
state is stored directly in the CPU
(register values, etc.)

(1 When the OS stops a process, it must save
all of this hardware state somewhere (PCB)
so that it can be restored again

1 The act of saving one processes hardware
state and restoring another's is called a
context switch

0 100s or 1000s per second!

Context Switch

process P,

operating system

interrupt or system call

executing | /

|

save state into PCBD

L]

.

-

reload state from PCB1

process P,

interrupt or system call

'

save state into PCB1

-

.

.

reload state from PCB0

\

-10

Schedulers

[Long-term scheduler (or job scheduler) -
selects which processes should be brought
into the ready queue.

0 Short-term scheduler (or CPU scheduler) -
selects which process should be executed
next and allocates CPU.

-11

Schedulers (cont)

1 Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast).

1 Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow).

1 The long-term scheduler controls the degree of
multiprogramming.
1 Processes can be described as either:

0 I/0-bound process - spends more time doing I/0 than
computations, many short CPU bursts.

0 CPU-bound process - spends more time doing
computations; few very long CPU bursts.

-12

Family Tree

0 Age old questions - where do new processes come
from?

17 New processes are created when an existing
process requests it

1 Creating process called the parent; created called the
child

0 Children of same parent called siblings

0 Children often inherit privileges/attributes from
their parent
0 Working directory, Clone of address space

1 When child is created, parent may either wait for
it or continue in parallel

-13

pstree

init-+-18*[Xvnc] init-+-18*[Xvnc] init-+-18*[Xvnc]

|-amd |-16*[magicdev] |-sshd-+-2*[sshd---csh---mc]

|-atd |-mdrecoveryd | |-sshd-—-csh

|-bdflush |-migration_CPUO | |-sshd---csh-+-more

|-crond |-migration_CPU1 | | *_netstat

|-16*[deskguide_apple] |-6*[mingetty] .

|-8*[gconfd-1] PP |-2*[nautilus---nautilus---8*[nautilus]] I -Sshd---csh———psfr‘ee

|-gedit |-2*[nautilus---nautilus---10*[nautilus]] |-syslogd ‘

|-18*[gnome-name-serv] |-3*[nautilus---nautilus---9*[nautilus]] |-16*[tasklist_applet]

|-16*[gnome-session] |-nautilus---nautilus---7*[nautilus] |-xemacs

|-16*[gnome-smproxy] |-7*[nautilus-histor] |'Xf5'"’<f5

|-gnome-terminal-+-csh---gtop |-nautilus-mozill---nautilus-mozill---4*[nautilus- |-Xinetd---fam '

| * -ghome-pty-helpe mozill] |-xscreensaver---greynetic

|-gnome-terminal-+-csh-+-gtop |-8*[nautilus-news] |-xscreensaver---hopalong

| | -tcsh |-8*[nautilus-notes] |-2*[xscreensaver---xscreensaver]

| * ghome-pty-helpe |-7*[nautilus-throbb] |-xscreensaver—-—kumppa

|-gnome-terminal-+-csh---tcsh--- |-ntpd |-xscreensaver---spgﬂ|ghf
xterm---csh |-13*[oafd] |-xscreensaver---spiral

| ' -gnome-pty-helpe |-16*[panel] |-xscreensaver---nerverot

|-gpm |-portmap |-xscreensaver---strange

|-8*[hyperbola] |-16*[rhn-applet] |-xscreensaver---flame

|-keventd |-rhn-applet---gnome_segv |-xscreensaver---grav

|-khubd |-rhnsd |-xscreensaver---lightning

|-5*[kjournald] |-rpc.statd |-xscreensaver---penetrate

|-klogd |-rpciod |-xscreensaver---rotzoomer---xscreensaver-ge

|-ksoftirqd_CPUO |-14*[sawfish] |-xscreensaver---deluxe

|-ksoftirqd_CPU1 |-2*[sawfish---rep] |-xscreensaver---rd-bomb

|-kswapd |-scsi_eh_0 |-xscreensaver---sonar

|-kupdated |-scsi_eh_1 |-xscreensaver---moire2

|-lockd |-sendmail * -ypbind---ypbind---2*[ypbind 14

Init process

In last stage of boot process, kernel creates a
user level process, init

Init is the parent (or grandparent...) of all other
processes

Init does various important housecleaning
activities
0 checks and mounts the filesystems, sets hosthame,
tfimezones, etc.
Init reads various "resource configuration files"
(/etc/rc.conf, etc) and spawns of f processes to
provide various services

In multi-user mode, init maintains processes for
each terminal port (tty)
0 Usually runs getty which executes the login program

-15

How is a process represented?

1 Usually a process or task object
0 Process Control Block

(1 When not running how does the OS
remember everything needed to start this
job running again

0 Registers, Statistics, Working directory, Open
files, User who owns process, Timers, Parent
Process and sibling process ids

1 In Linux, task_struct defined in

include/linux/sched.h

-16

struct task_struct {

stopped */

*l

below */

*l

leader */

[* these are hardcoded - don't touch */
volatile long state; /* -1 unrunnable, 0 runnable, >0

long counter;

long priority;

unsigned long signal;

unsigned long blocked; /* bitmap of masked signals

unsigned long flags; /* per process flags, defined

int errno;
long debugreg[8]; /* Hardware debugging registers */
struct exec_domain *exec_domain; /* various fields

struct linux_binfmt *binfmt;

struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;

int exit_code, exit_signal; /* ??7? */
unsigned long personality;

int dumpable:1;

int did_exec:1; /* shouldn't this be pid_t? */
int pid;

int pgrp; int tty_old_pgrp;

int session; /* boolean value for session group

int leader; int groups[INGROUPS];
[* * pointers to (original) parent process, youngest

child, younger sibling, * older sibling,

>p_pptr->pid) */

respectively. (p->father can be replaced with * p-

struct task_struct *p_opptr, *p_pptr, *p_cptr,

*p_ysptr, *p_osptr;

it_virt_value;

struct wait_queue *wait_chldexit; /* for wait4() */
unsigned short uid,euid,suid,fsuid;

unsigned short gid,egid,sgid,fsgid;

unsigned long timeout, policy, rt_priority;
unsigned long it_real_value, it_prof_value,

unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;

long utime, stime, cutime, cstime, start_time;

/* mm fault and swap info: this can arguably be seen
as either mm-specific or thread-specific */

unsigned long min_flt, maj_flt, nswap, cmin_flt,
cmaj_flt, cnswap;

int swappable:1;

unsigned long swap_address;

unsigned long old_maj_flt; /* old value of maj_flt */

unsigned long dec_flt; /* page fault count of the last
time */

unsigned long swap_cnt; /* number of pages to
swap on next pass */

/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm([16];
[* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo *semundo; struct sem_queue
*semsleeping;
/* 1dt for this task - used by Wine. If NULL,
default_Idt is used */
struct desc_struct *Idt;
/* tss for this task */
struct thread_struct tss;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* memory management info */
struct mm_struct *mm;
/* signal handlers */
struct signal_struct *sig;
#ifdef _ SMP__
int processor;
int last_processor;
int lock_depth; /* Lock depth. We
can context switch in and out of holding a syscall kernel lock... */
#endif }; -17

Management of PCBs

1 PCBs are data structures (just like you are used to
at user level)

0 Space for them may be dynamically allocated as
needed or perhaps a fixed sized array of PCBs for
the maximum number of possible processes is
allocated at init time

0 As process is created, a PCB is assigned and
initialized for it
0 Offen process id is an offset into an array of PCBs
1 After process terminates, PCB is freed

(sometimes kept around for parent to retrieve its
exit status)

-18

State Queues

Head ptr

—>

-« Prev ﬁ

Prev
hext E— next —> next
Rest of PCB Rest of PCB Rest of PCB

Ready queue, queues per device, queue of all processes, ...

-19

Context Switch

0 When a process is running, some of its state is
stored directly in the CPU (register values, etc.)

1 When the OS stops a process, it must save all of
this hardware state somewhere (PCB) so that it
can be restored again

0 The act of saving one processes hardware state
and restoring another's is called a context switch
7 100s or 1000s per second!

-20

UNIX process creation

0 Fork() system call
0 Creates a hew PCB and a new address space

0 Initializes the new address space with a *copy™
of the parent's address space

0 Initializes many other resources to copies of
the parents (e.g. same open files)

[Places new process on the queue of runnable
processes

0 Fork() returns twice: to parent and child
0 Returns child's process ID to the parent
0 Returns O to the child

-21

Example Code Snippet

int main (int argc, char **argv)

{

int childPid;
childPid = fork();

if (childPid == 0) {
printf (YChild running\n”);
} else {

printf (“Parent running: my child is %d\n”,
childPid) ;

-22

Qutput

$./tryfork
Parent running: my child 1s 707

Child running

0
°

-23

Experiments

0 Try putting an infinite loop in the child's portion (
do you return to the command shell?) and then
looking for it in the ps output

0 Try putting an infinite loop in the parent’s portion
(do you return to the command shell?)
1 Put an infinite loop in both

0 try killing the child (look in the ps output for the child
and the parent)

0 Try killing the parent - what happens to the child?

24

Fork and Exec

1 How do we get a brand new process not just a copy
of the parent?

0 Exec () system call
0 int exec (char * prog, char ** argv)

0 Exec:
0 Stops the current process
0 Loads the program, prog, into the address space
0 Passes the arguments specified in argv
7 Places the PCB back on the ready queue

0 Exec "takes over” the process

0 There is no going back to it when it returns

0 Try to exec something in your shell (example: exec Is) -
when Is is done your shell is gone because Is replaced it!

-25

UNIX Shell

int main
{

while

(int argc, char **argv)

(1) {
int childPid;

char * cmdLine = readCommandLine () ;

if (userChooseExit (cmdLine)) {
walit for all background jobs

childPid = fork();

if (childPid == 0) {
setSTDOUT STDIN STDERR (cmdLine);
exec (getCommand (cmdLine))

} else {
if (runInForeground (cmdLine)) {
walt (childPid);

Windows Process Creation

BOOL CreateProcess(

LPCTSTR /pApplicationName, /| name of executable module
LPTSTR JoCommandLine, /| command line string
LPSECURITY_ATTRIBUTES /pProcessAftributes, [/ SD
LPSECURITY_ATTRIBUTES /pThreadAlttributes, /| SD
BOOL b/nheritHandles, |/ handle inheritance option

DWORD awCreationFlags, I/ creation flags
LPVOID /JpEnvironment, /| new environment block

LPCTSTR /pCurrentDirectory, /| current directory name
LPSTARTUPINFO /[pStartupinifo, I/ startup information

LPPROCESS_INFORMATION /pProcessinformation [/
information);

-27

Windows vs Unix

0 Windows doesn't maintain the same
relationship between parent and child

Q Later versions of Windows have concept of
“job" to mirror UNIX notion of parent and
children (process groups)

A Waiting for a process to complete?

0 WaitforSingleObject to wait for completion

0 GetExitCodeProcess (will return STILL_ALIVE
until process has terminated)

-28

Cooperating Processes

1 Processes can run independently of each other or
processes can coordinate their activities with
other processes

0 To cooperate, processes must use OS facilities to
communicate
0 One example: parent process waits for child

0 Many others
- Shared Memory

* Files

+ Sockets

- Pipes

» Signals

- Events

 Remote Procedure Call

-29

Sockets

1 A socket is an end-point for communication
over the network

1 Create a socket

0 1nt socket (int domailin, 1nt type, 1int
protocol)

1 Type = SOCK_STREAM for TCP
[Read and write socket just like files

[Can be used for communication between
two processes on same machine or over the
network

-30

Pipes

] Bi-directional data channel between two
processes oh the same machine

J Created with:
0 1nt pipe (int fildes[Z2])

1 Read and write like files

-31

Signals

0 Processes can register to handle signals with the
signal function

0 volid signal (int signum, void (*proc) (int))

0 Processes can send signals with the kill function
0 kill (pi1d, signum)

0 System defined signals like SIGHUP (0), SIGKILL
(9), SIGSEGV(11)
0 In UNIX shell, try:
“kill -9 pidOfProcessYouDon'tReallyCareAbout”

0 Signals not used by system like SIGUSR1 and
SIGUSR?2

-32

Remote Procedure Call (RPC)

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{ implementation of someMethod

Ll L

skeleton
A A

A, B, someMethod

boolean return value

Processes

(1 What is a process?

1 Process States

1 Switching Between Processes
1 Process Creation

1 PCBs

11 Communication/Cooperation between
processes

34

