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OS Layer

r Remember OS is a layer between the underlying 
hardware and application demands

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware
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Raw Materials

rWhat does the OS have to work to provide 
an efficient, fair, convenient, secure 
computing platform? 

r Raw hardware
m CPU architecture (instruction sets, registers, 

busses, caches, DMA controllers, etc.)
m Peripherals (CD-ROMs, disk drives, network 

interfaces, etc.)
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Computer System Architecture

ALU

Control
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CPU

r Registers
• Local storage or scratch space

r Arthimetic logic unit (ALU) 
• Addition, multiplication, etc (integer and/or floating point)
• Logical operations like testing for equality or 0
• Operations performed by loading values into registers from 

memory,  operating on the values in the registers, then 
saving register values back to memory

r Control unit 
• Cause a sequence of instructions, stored in memory to be 

retrieved and executed
• Fetch instruction from memory, decode instruction, signal 

functional units to carry out tasks
• PC = program counter contains memory address of 

instruction being processed
• IR – instruction register – copy of the current instruction
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Bus and Memory

r Bus
m Address lines, data lines, some lines for arbitration
m Internal communication pathway between CPU, memory 

and device controllers
m Sometimes one system bus; sometimes separate memory 

bus and I/O bus 
r Memory 

m Both data and instructions must be loaded from memory 
into the CPU in order to be executed

m To access memory, address placed in memory address 
register and command register written

m Range of memory addresses? Size of data register? 
Determined by memory technology
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Devices

r Device controllers 
m Small processing units that connect a device to the 

system bus 
m Registers that can be read/written by CPU

• command register (what to do), status register (is the 
device busy? Has the device completed a request?) , data 
register to store data bring written to the device or read 
from the device

r Device drivers 
m Software to hide the complexities of the device 

controller interface behind a higher level logical API
m Example: read lba 10 instead vs. write command value 

0x30 to command register, address 10 to address 
register,… 
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Better Raw Material?

rThe “better” the underlying hardware, the 
better computing experience the OS can 
expose

r Certainly the faster the CPU, the more 
memory, etc. the better experience the 
OS can expose to applications

rAlso there are some features that the 
hardware can provide to make the OS’s job 
much easier 

r Lets see if we can guess some…
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Enforcing Protection

r If we want the operating system to be able 
to enforce protection and policies on all 
user processes, what can give the OS the 
power to do that?
m Protected Instructions
m Deny applications direct access to the hardware
m Protected Mode of Execution (user vs kernel)
mMemory protection hardware
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Protected Instructions

r If you would look over the assembly language for a 
computer, you may notice that some instructions 
look pretty dangerous
m Should any application be allowed to directly execute the 

halt instruction? Denial of service attack?
m Should any application be allowed to directly access I/O 

devices? Read any ones files from disk?
r Hardware can help OS by designating some 

instructions as protected instructions that only 
the OS can issue

r How can the hardware tell whether it is OS 
(kernel) code or user code?
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Protected Mode

r In addition to designating certain instructions as 
protected instructions, the hardware would need 
to be able to distinguish the OS from user apps

r Most architectures have a “mode” value in a 
protected register
m When user applications execute, the mode value is set to 

one thing
m When the OS kernel executes, the mode value set to 

something else
m If code running in user mode, an attempt to execute 

protected instructions will generate an exception
m Switching the mode value must of course be protected

r Some architectures support more protection 
modes than just user/kernel
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Switching Modes

rSo how do we switch between an OS 
running in kernel mode and an application 
running in user mode?
mOS could set the mode bit to a different mode 

before allowing the application to run on the 
CPU

m If an application needs to access a protected 
resource to accomplish its task (like read a file 
or send a message on the network), how can it 
do that at user mode?

rOnce an application is running how can we 
force it to relinquish control?
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System Calls

r If an application legitimately needs to access a 
protected feature (Ex. read a file from disk, it 
calls a special OS procedure called a “system call”
m System call instruction executed with a parameter than 

designates specific call desired and any other 
parameters needed

m The state of the user program is saved so that it can be 
restored (context switch to the OS)

m Control passed to an OS procedure to accomplish the 
task and mode bit changed!

m OS procedure runs at the request of the user program 
but can verify the user program’s “rights” and refuse to 
perform the action if necessary

m On completion state of user program including the old 
mode bit is restored 
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System Call Illustrated

User mode
Kernel mode

File.open(“/home/README”)

Save user registers and mode, lookup
SYS_OPEN in a table of system call procedures,
Change mode bit, jump to the kernelOpen procedure

SystemCall (SYS_OPEN, “/home/README”)

kernelOpen(“/home/README”, 
this applications access rights)

Resume application with file
opened or error

Restore user 
mode and 
application’s 
registers etc.
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Memory Protection

r All code that executes on the CPU must be loaded 
into memory (its code, its data, etc.)
m It is executed by setting the program counter register 

to point to the memory location of the next instruction 
to execute (add, jump, load, store, etc.)

r OS has its code in memory and so does each 
runnable user process

r Would we want a process to store random data 
into the OS’s code or data  segments? What about 
into another processes code or data segments?  

r What prevents this?
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Simple Memory Protection 
Hardware
r Give each process a contiguous set of memory 

addresses to use and dedicate two registers to 
specifying the top and the bottom of this region
m Of course, changing the base and limit register must be 

protected! 

r Memory protection hardware generally more 
powerful that base and limit registers (page 
tables, TLB, etc.)

OS

Process 1

Process 2

Base register
Limit register

When process 1 executing, base and 
limit set to point to process 1’s memory 
region if process 1 tries to load 
or store to addresses outside this 
region then hardware will transfer 
control to the OS 
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Transferring Control to the OS

rA system call causes control to be 
transferred to the OS at the application’s 
request

rOther things can cause control to be 
transferred to the OS but not at the 
application’s request
m Could be that the application did something 

wrong like tried to address memory it shouldn’t 
or tries to divide by 0, etc.

m Could be that a hardware device is requesting 
service
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Concrete Example: Intel CPU

r During OS initialization:
m Interrupt Descriptor Table (IDT) loaded with handlers 

for each kind of interrupt
m System call is interrupt vector 128 (0x80)
m Kernel code segment is set to have privilege level 0 (user 

code runs at 3)
r Entry in IDT corresponding to vector 128 is set 

with:
m Pointer to the kernel code segment and offset of the 

system call handler in this segment
m Permission for code running at level 3 to invoke it

r To make system call, user level app:
m Sets eax register to the system call number
m Executed “int 0x80” instruction
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A Day in the Life of the OS

r When a machine reboots, the operating system will 
execute for some time to initialize the state of 
the machine and to start up certain system 
processes

r Once initialization is complete, the OS only 
executes when some “event” (e.g. system call, 
device interrupt) occurs that require its attention

r When an event occurs
m The current state of the machine is saved
m The mode changes to protected mode
m An event handler procedure is executed (handlers for all 

possible events must be specified)
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Interrupts and Exceptions

r Two main types of events
r Exceptions are caused by software

m Normal software requests for OS service are called 
“traps” 

m Software errors that transfer control to the OS are 
called “faults”

r Interrupts are caused by hardware (e.g. device 
notifies CPU that it has completed an I/O 
request)

r Warning: Understand the various types but don’t 
worry too much about the names
m Sometimes system calls called software interrupts
m Sometimes say “trap to the OS” to handle a hardware 

interrupt
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Overlapping I/O and 
Computation
r If we want the OS to be able to efficiently 

keep the CPU busy, then I/O devices need 
to be able to operate independently

r Even if CPU can do other work while I/O is 
pending, system is still inefficient if CPU 
constantly needs to check for I/O 
completion (polling) 
m Interrupts
m DMA
m Buffering
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Interrupt Driven I/O
r CPU uses special instructions or writes to special 

memory addresses (memory mapped I/O) to 
initiate the I/O request

r Device will perform the request while the CPU 
does other work

r When the request is complete, the device will send 
an interrupt signal to the CPU via a shared bus

r Interrupt causes control to transfer to the OS 
(even if an application is in the middle of 
execution)

r Interrupt handler saves the context of the 
current process and then uses the interrupt type 
to index into a vector table of routines

r Control switches to the procedure registered in 
the table to handle the specific interrupt 
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Interrupting interrupts?

rWhat happens if get another interrupt 
while processing one? Information about 
first interrupt could be lost

rDisable interrupts while processing an 
interrupt

rWhen finished processing an interrupt, 
check other devices with pending requests 
for a “done” status
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Intel Architecture’s PIC

r Programmable Interrupt Controller (PIC)  is a chip 
that offloads some interrupt processing from the 
main CPU

r Serves a referee to prioritize interrupt signals 
and allows devices to prevent conflicts
m Device interrupts go to the PIC; PIC determines which 

device raised the interrupt; Sends interrupt to the CPU 
with a value indicating the interrupt service routine to 
invoke

m If multiple interrupts, PIC will buffer them and send 
them one at a time to the CPU

r Treated by the main CPU as a peripheral
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Request Processing With 
Interrupts
r To issue a request, OS executes the “top half” 

initiates request processing
m Check if device is available
m If so write command, address and data registers
m Stores info about the request issued
m CPU returns to other processing; device controller gets 

busy working on request
r When request is done, “bottom half” completes 

request
m device controller interrupts the CPU, finds interrupt 

handler and retrieves info stored about the request
m CPU copies data from the device controller registers to 

main memory if needed
m Sets device status to available
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DMA 

r Still if we want to transfer large chunks of data, 
CPU will still need to be very involved
m For each small chunk of data, CPU must write a command 

to the command and address registers and transfer data 
to/from the data register

m Very regular pattern
r DMA or Direct Memory Access automates this 

process  and provides even greater overlap of 
computation and I/O
m Tell device controller with DMA: Starting memory 

address and length and it will get each piece directly 
from memory as it needs it

m Scatter/gather list: don’t limit it to single start/length
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Buffering

r Still more can be one to overlap computation and 
I/O

r What if I/O is slow enough and requested 
frequently enough, all processes may be waiting 
for I/O
m I/O bound vs compute bound jobs

r For writes, copy data to a buffer and then allow 
process to continue while data is written from 
buffer to device
m If system crashes?

r For reads, read data ahead in anticipation of 
demand
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Memory Mapped I/O

r For each device, set aside a range of memory that 
will be mapped to the registers of the device

r The CPU thinks it is reading/writing memory 
locations (same instructions, same addressing 
scheme)

r Without memory mapped I/O, CPU needs a way to 
name each register on each device controller
m Special instructions? Device/register addresses?
m Required knowledge of number and type of devices at 

design time
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Regaining the CPU

r If a user application is running on the CPU, what 
can the OS do to make it yield the CPU after its 
turn?
m Timer (clock) operation
m Timer generates interrupts on a regular interval to 

transfer control back to the OS
r What will the OS due when it regains control? 

Give another application a chance to run
m Which one? Scheduling 
m How? Context Switch
m More on this later…
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Synchronization

r When we write a program, we think about adjacent 
instructions happening in order without 
interruption

r We’ve seen lots of things that can interrupt the 
execution of a process (timers, I/O request 
completion, etc.)
m Most times this is ok; the state of our process is 

restored and the illusion is maintained
m But sometimes it is really important that two things 

happen together with no interruption
m Specifically if two processes are sharing resources

• Example: two processes updating a shared database of 
account balances; one reads balance and adds $100, one 
reads balance and removes $100
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Hardware support for 
Synchronization
r Need a way to guarantee that a sequence of 

instructions occur at once – at least with respect 
to other entities that are accessing the same data

r Solution 1: Disable Interrupts 
m Until re-enabled, instruction sequence will run to 

completion
m Would you like to allow applications to do this?

r Solution 2: Provide Locks
m Acquire lock, perform sequence, release lock
m Sequence may be interrupted but interruption not visible 

to others because they wait to acquire the lock
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Building Locks

r Acquiring a shared lock is the same problem as 
updating a shared bank balance

r Hardware can provide a grouping of instructions 
that it will guarantee to happen atomically
m Test and set, read/modify/write
m From these build locks, from locks build any atomic unit

Read balance ($300)
Read balance ($300)
Decrement $100 ($200)
Increment $100 ($400)
Write balance ($200)
Write balance ($400)

Withdrawal lost!

Is lock free? (yes)
Is lock free? (yes)
Write “I’ve got lock”
Write “I’ve got lock”
Proceed to access
Proceed to access

Concurrent access violating lock!
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OS Layer

rOS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware
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Programmers/users demand 
performance
r Users want to realize the full “advertised” 

capability of a hardware resource
m If they have a disk capable of 20 MB/sec transfer rate, 

then they would like to be able to read files at that rate
m If they have a network interface card capable of 100 

Mbit/sec transmission rate, then they would like to be 
able to send data at that rate

r Operating System usually provide the desired 
functionality at a cost of some overhead (tax like 
the government)
m Avoid seek and rotational delay when reading/writing to 

the disk
m Avoid control messages sent over the network 
m Use a minimum of memory/disk space

r Programmers/users want that tax to be at a 
minimum
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Performance Optimization

r Operating systems try to optimize their 
algorithms to minimize the “tax” on applications

r What algorithms minimize the tax? That is a hard 
question – depends on what your workload is

r Example: What data do you keep in memory?
m LRU is generally good but is exactly the wrong thing for 

large sequential accesses
r Optimize for the “common” case? Adapt? Let 

applications give hints?
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OS Goals

r So operating systems should:
m Abstract the raw hardware
m Protect apps from each other
m Not allow applications to monopolize more that their fair 

share of system resources
m Provide desired functionality 
m Expose the raw capability of the hardware, minimizing 

the “tax”
m Optimize for the expected (any?) workload
m Be simple enough that the code executes quickly and can 

be debugged easily
r Does this sound like a big job to anyone?
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Outtakes
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Programmers/users demand 
functionality
r Operating systems provide commonly needed 

functionality
m Programmers want stable storage, want to be able to 

share contents with other apps => file system with 
naming scheme shared by all processes

m Programmers don’t want to deal with paging their own 
code and data in and out of limited physical memory (and 
want protection/isolation from other processes) => 
virtual memory

m Programmers want running processes to be able to 
communicate (not complete protection and isolation) => 
shared memory regions, pipes, sockets, events

m Users don’t want a single task to be able to monopolize 
the CPU => preemptive scheduling

m Users want to be able to designate high and low priority 
processes => priority scheduling

m …….
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Application demands exceed OS 
functionality?
rNot all applications are happy with the 

operating system’s services
rMany things an operating system does, 

application programmers could do on their 
own if they were sufficiently motivated

r Examples:
m Databases traditionally ask for a raw disk 

partition and manage it themselves (who needs 
the FS?) 

m User-level thread libraries can be more 
efficient than kernel level threads
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Application Moves Into the OS

r If a computer system is going to be used, 
for one application, can avoid overhead of 
crossing user/kernel protection boundary 
by putting the application in the kernel
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Driving forces for OS 
development?
r Many times platform implies operating system; 

system hardware usually marketed more than OS
r Choice of OS for the PC platform is not the norm
r Even on PC platform, what drives OS development

m Application mix, stability, politics bigger factors than OS 
features?

m OS features driven by stability and ease of 
porting/writing apps

r All this implies OS you use every day doesn’t 
follow the bleeding edge like hardware


