
-1

2:
Architectural Underpinnings
and Application Requirements

Last Modified:
9/2/2002 11:04:08 PM

-2

OS Layer

r Remember OS is a layer between the underlying
hardware and application demands

r OS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware

-3

Raw Materials

rWhat does the OS have to work to provide
an efficient, fair, convenient, secure
computing platform?

r Raw hardware
m CPU architecture (instruction sets, registers,

busses, caches, DMA controllers, etc.)
m Peripherals (CD-ROMs, disk drives, network

interfaces, etc.)

-4

Computer System Architecture

ALU

Control

-5

CPU

r Registers
• Local storage or scratch space

r Arthimetic logic unit (ALU)
• Addition, multiplication, etc (integer and/or floating point)
• Logical operations like testing for equality or 0
• Operations performed by loading values into registers from

memory, operating on the values in the registers, then
saving register values back to memory

r Control unit
• Cause a sequence of instructions, stored in memory to be

retrieved and executed
• Fetch instruction from memory, decode instruction, signal

functional units to carry out tasks
• PC = program counter contains memory address of

instruction being processed
• IR – instruction register – copy of the current instruction

-6

Bus and Memory

r Bus
m Address lines, data lines, some lines for arbitration
m Internal communication pathway between CPU, memory

and device controllers
m Sometimes one system bus; sometimes separate memory

bus and I/O bus
r Memory

m Both data and instructions must be loaded from memory
into the CPU in order to be executed

m To access memory, address placed in memory address
register and command register written

m Range of memory addresses? Size of data register?
Determined by memory technology

-7

Devices

r Device controllers
m Small processing units that connect a device to the

system bus
m Registers that can be read/written by CPU

• command register (what to do), status register (is the
device busy? Has the device completed a request?) , data
register to store data bring written to the device or read
from the device

r Device drivers
m Software to hide the complexities of the device

controller interface behind a higher level logical API
m Example: read lba 10 instead vs. write command value

0x30 to command register, address 10 to address
register,…

-8

Better Raw Material?

rThe “better” the underlying hardware, the
better computing experience the OS can
expose

r Certainly the faster the CPU, the more
memory, etc. the better experience the
OS can expose to applications

rAlso there are some features that the
hardware can provide to make the OS’s job
much easier

r Lets see if we can guess some…

-9

Enforcing Protection

r If we want the operating system to be able
to enforce protection and policies on all
user processes, what can give the OS the
power to do that?
m Protected Instructions
m Deny applications direct access to the hardware
m Protected Mode of Execution (user vs kernel)
mMemory protection hardware

-10

Protected Instructions

r If you would look over the assembly language for a
computer, you may notice that some instructions
look pretty dangerous
m Should any application be allowed to directly execute the

halt instruction? Denial of service attack?
m Should any application be allowed to directly access I/O

devices? Read any ones files from disk?
r Hardware can help OS by designating some

instructions as protected instructions that only
the OS can issue

r How can the hardware tell whether it is OS
(kernel) code or user code?

-11

Protected Mode

r In addition to designating certain instructions as
protected instructions, the hardware would need
to be able to distinguish the OS from user apps

r Most architectures have a “mode” value in a
protected register
m When user applications execute, the mode value is set to

one thing
m When the OS kernel executes, the mode value set to

something else
m If code running in user mode, an attempt to execute

protected instructions will generate an exception
m Switching the mode value must of course be protected

r Some architectures support more protection
modes than just user/kernel

-12

Switching Modes

rSo how do we switch between an OS
running in kernel mode and an application
running in user mode?
mOS could set the mode bit to a different mode

before allowing the application to run on the
CPU

m If an application needs to access a protected
resource to accomplish its task (like read a file
or send a message on the network), how can it
do that at user mode?

rOnce an application is running how can we
force it to relinquish control?

-13

System Calls

r If an application legitimately needs to access a
protected feature (Ex. read a file from disk, it
calls a special OS procedure called a “system call”
m System call instruction executed with a parameter than

designates specific call desired and any other
parameters needed

m The state of the user program is saved so that it can be
restored (context switch to the OS)

m Control passed to an OS procedure to accomplish the
task and mode bit changed!

m OS procedure runs at the request of the user program
but can verify the user program’s “rights” and refuse to
perform the action if necessary

m On completion state of user program including the old
mode bit is restored

-14

System Call Illustrated

User mode
Kernel mode

File.open(“/home/README”)

Save user registers and mode, lookup
SYS_OPEN in a table of system call procedures,
Change mode bit, jump to the kernelOpen procedure

SystemCall (SYS_OPEN, “/home/README”)

kernelOpen(“/home/README”,
this applications access rights)

Resume application with file
opened or error

Restore user
mode and
application’s
registers etc.

-15

Memory Protection

r All code that executes on the CPU must be loaded
into memory (its code, its data, etc.)
m It is executed by setting the program counter register

to point to the memory location of the next instruction
to execute (add, jump, load, store, etc.)

r OS has its code in memory and so does each
runnable user process

r Would we want a process to store random data
into the OS’s code or data segments? What about
into another processes code or data segments?

r What prevents this?

-16

Simple Memory Protection
Hardware
r Give each process a contiguous set of memory

addresses to use and dedicate two registers to
specifying the top and the bottom of this region
m Of course, changing the base and limit register must be

protected!

r Memory protection hardware generally more
powerful that base and limit registers (page
tables, TLB, etc.)

OS

Process 1

Process 2

Base register
Limit register

When process 1 executing, base and
limit set to point to process 1’s memory
region if process 1 tries to load
or store to addresses outside this
region then hardware will transfer
control to the OS

-17

Transferring Control to the OS

rA system call causes control to be
transferred to the OS at the application’s
request

rOther things can cause control to be
transferred to the OS but not at the
application’s request
m Could be that the application did something

wrong like tried to address memory it shouldn’t
or tries to divide by 0, etc.

m Could be that a hardware device is requesting
service

-18

Concrete Example: Intel CPU

r During OS initialization:
m Interrupt Descriptor Table (IDT) loaded with handlers

for each kind of interrupt
m System call is interrupt vector 128 (0x80)
m Kernel code segment is set to have privilege level 0 (user

code runs at 3)
r Entry in IDT corresponding to vector 128 is set

with:
m Pointer to the kernel code segment and offset of the

system call handler in this segment
m Permission for code running at level 3 to invoke it

r To make system call, user level app:
m Sets eax register to the system call number
m Executed “int 0x80” instruction

-19

A Day in the Life of the OS

r When a machine reboots, the operating system will
execute for some time to initialize the state of
the machine and to start up certain system
processes

r Once initialization is complete, the OS only
executes when some “event” (e.g. system call,
device interrupt) occurs that require its attention

r When an event occurs
m The current state of the machine is saved
m The mode changes to protected mode
m An event handler procedure is executed (handlers for all

possible events must be specified)

-20

Interrupts and Exceptions

r Two main types of events
r Exceptions are caused by software

m Normal software requests for OS service are called
“traps”

m Software errors that transfer control to the OS are
called “faults”

r Interrupts are caused by hardware (e.g. device
notifies CPU that it has completed an I/O
request)

r Warning: Understand the various types but don’t
worry too much about the names
m Sometimes system calls called software interrupts
m Sometimes say “trap to the OS” to handle a hardware

interrupt

-21

Overlapping I/O and
Computation
r If we want the OS to be able to efficiently

keep the CPU busy, then I/O devices need
to be able to operate independently

r Even if CPU can do other work while I/O is
pending, system is still inefficient if CPU
constantly needs to check for I/O
completion (polling)
m Interrupts
m DMA
m Buffering

-22

Interrupt Driven I/O
r CPU uses special instructions or writes to special

memory addresses (memory mapped I/O) to
initiate the I/O request

r Device will perform the request while the CPU
does other work

r When the request is complete, the device will send
an interrupt signal to the CPU via a shared bus

r Interrupt causes control to transfer to the OS
(even if an application is in the middle of
execution)

r Interrupt handler saves the context of the
current process and then uses the interrupt type
to index into a vector table of routines

r Control switches to the procedure registered in
the table to handle the specific interrupt

-23

Interrupting interrupts?

rWhat happens if get another interrupt
while processing one? Information about
first interrupt could be lost

rDisable interrupts while processing an
interrupt

rWhen finished processing an interrupt,
check other devices with pending requests
for a “done” status

-24

Intel Architecture’s PIC

r Programmable Interrupt Controller (PIC) is a chip
that offloads some interrupt processing from the
main CPU

r Serves a referee to prioritize interrupt signals
and allows devices to prevent conflicts
m Device interrupts go to the PIC; PIC determines which

device raised the interrupt; Sends interrupt to the CPU
with a value indicating the interrupt service routine to
invoke

m If multiple interrupts, PIC will buffer them and send
them one at a time to the CPU

r Treated by the main CPU as a peripheral

-25

Request Processing With
Interrupts
r To issue a request, OS executes the “top half”

initiates request processing
m Check if device is available
m If so write command, address and data registers
m Stores info about the request issued
m CPU returns to other processing; device controller gets

busy working on request
r When request is done, “bottom half” completes

request
m device controller interrupts the CPU, finds interrupt

handler and retrieves info stored about the request
m CPU copies data from the device controller registers to

main memory if needed
m Sets device status to available

-26

DMA

r Still if we want to transfer large chunks of data,
CPU will still need to be very involved
m For each small chunk of data, CPU must write a command

to the command and address registers and transfer data
to/from the data register

m Very regular pattern
r DMA or Direct Memory Access automates this

process and provides even greater overlap of
computation and I/O
m Tell device controller with DMA: Starting memory

address and length and it will get each piece directly
from memory as it needs it

m Scatter/gather list: don’t limit it to single start/length

-27

Buffering

r Still more can be one to overlap computation and
I/O

r What if I/O is slow enough and requested
frequently enough, all processes may be waiting
for I/O
m I/O bound vs compute bound jobs

r For writes, copy data to a buffer and then allow
process to continue while data is written from
buffer to device
m If system crashes?

r For reads, read data ahead in anticipation of
demand

-28

Memory Mapped I/O

r For each device, set aside a range of memory that
will be mapped to the registers of the device

r The CPU thinks it is reading/writing memory
locations (same instructions, same addressing
scheme)

r Without memory mapped I/O, CPU needs a way to
name each register on each device controller
m Special instructions? Device/register addresses?
m Required knowledge of number and type of devices at

design time

-29

Regaining the CPU

r If a user application is running on the CPU, what
can the OS do to make it yield the CPU after its
turn?
m Timer (clock) operation
m Timer generates interrupts on a regular interval to

transfer control back to the OS
r What will the OS due when it regains control?

Give another application a chance to run
m Which one? Scheduling
m How? Context Switch
m More on this later…

-30

Synchronization

r When we write a program, we think about adjacent
instructions happening in order without
interruption

r We’ve seen lots of things that can interrupt the
execution of a process (timers, I/O request
completion, etc.)
m Most times this is ok; the state of our process is

restored and the illusion is maintained
m But sometimes it is really important that two things

happen together with no interruption
m Specifically if two processes are sharing resources

• Example: two processes updating a shared database of
account balances; one reads balance and adds $100, one
reads balance and removes $100

-31

Hardware support for
Synchronization
r Need a way to guarantee that a sequence of

instructions occur at once – at least with respect
to other entities that are accessing the same data

r Solution 1: Disable Interrupts
m Until re-enabled, instruction sequence will run to

completion
m Would you like to allow applications to do this?

r Solution 2: Provide Locks
m Acquire lock, perform sequence, release lock
m Sequence may be interrupted but interruption not visible

to others because they wait to acquire the lock

-32

Building Locks

r Acquiring a shared lock is the same problem as
updating a shared bank balance

r Hardware can provide a grouping of instructions
that it will guarantee to happen atomically
m Test and set, read/modify/write
m From these build locks, from locks build any atomic unit

Read balance ($300)
Read balance ($300)
Decrement $100 ($200)
Increment $100 ($400)
Write balance ($200)
Write balance ($400)

Withdrawal lost!

Is lock free? (yes)
Is lock free? (yes)
Write “I’ve got lock”
Write “I’ve got lock”
Proceed to access
Proceed to access

Concurrent access violating lock!

-33

OS Layer

rOS functionality determined by both
m Features of the hardware
m Demands of applications

Applications

Operating Systems

Hardware

-34

Programmers/users demand
performance
r Users want to realize the full “advertised”

capability of a hardware resource
m If they have a disk capable of 20 MB/sec transfer rate,

then they would like to be able to read files at that rate
m If they have a network interface card capable of 100

Mbit/sec transmission rate, then they would like to be
able to send data at that rate

r Operating System usually provide the desired
functionality at a cost of some overhead (tax like
the government)
m Avoid seek and rotational delay when reading/writing to

the disk
m Avoid control messages sent over the network
m Use a minimum of memory/disk space

r Programmers/users want that tax to be at a
minimum

-35

Performance Optimization

r Operating systems try to optimize their
algorithms to minimize the “tax” on applications

r What algorithms minimize the tax? That is a hard
question – depends on what your workload is

r Example: What data do you keep in memory?
m LRU is generally good but is exactly the wrong thing for

large sequential accesses
r Optimize for the “common” case? Adapt? Let

applications give hints?

-36

OS Goals

r So operating systems should:
m Abstract the raw hardware
m Protect apps from each other
m Not allow applications to monopolize more that their fair

share of system resources
m Provide desired functionality
m Expose the raw capability of the hardware, minimizing

the “tax”
m Optimize for the expected (any?) workload
m Be simple enough that the code executes quickly and can

be debugged easily
r Does this sound like a big job to anyone?

-37

Outtakes

-38

Programmers/users demand
functionality
r Operating systems provide commonly needed

functionality
m Programmers want stable storage, want to be able to

share contents with other apps => file system with
naming scheme shared by all processes

m Programmers don’t want to deal with paging their own
code and data in and out of limited physical memory (and
want protection/isolation from other processes) =>
virtual memory

m Programmers want running processes to be able to
communicate (not complete protection and isolation) =>
shared memory regions, pipes, sockets, events

m Users don’t want a single task to be able to monopolize
the CPU => preemptive scheduling

m Users want to be able to designate high and low priority
processes => priority scheduling

m …….

-39

Application demands exceed OS
functionality?
rNot all applications are happy with the

operating system’s services
rMany things an operating system does,

application programmers could do on their
own if they were sufficiently motivated

r Examples:
m Databases traditionally ask for a raw disk

partition and manage it themselves (who needs
the FS?)

m User-level thread libraries can be more
efficient than kernel level threads

-40

Application Moves Into the OS

r If a computer system is going to be used,
for one application, can avoid overhead of
crossing user/kernel protection boundary
by putting the application in the kernel

-41

Driving forces for OS
development?
r Many times platform implies operating system;

system hardware usually marketed more than OS
r Choice of OS for the PC platform is not the norm
r Even on PC platform, what drives OS development

m Application mix, stability, politics bigger factors than OS
features?

m OS features driven by stability and ease of
porting/writing apps

r All this implies OS you use every day doesn’t
follow the bleeding edge like hardware

