
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 31: Instruction Selection
09 Apr 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Backend Optimizations

• Instruction selection
– Translate low-level IR to assembly instructions
– A machine instruction may model multiple IR instructions
– Especially applicable to CISC architectures

• Register Allocation
– Place variables into registers
– Avoid spilling variables on stack

CS 412/413 Spring 2008 Introduction to Compilers 3

Instruction Selection
• Different sets of instructions in low-level IR and in the

target machine
• Instruction selection = translate low-level IR to

assembly instructions on the target machine

• Straightforward solution: translate each low-level IR
instruction to a sequence of machine instructions

• Example:

x = y + z

mov y, r1
mov z, r2
add r2, r1
mov r1, x

CS 412/413 Spring 2008 Introduction to Compilers 4

Instruction Selection
• Problem: straightforward translation is inefficient

– One machine instruction may perform the computation in
multiple low-level IR instructions

– Excessive memory traffic

• Consider a machine that includes the following instructions:
add r2, r1 r1 ← r1+r2
mulc c, r1 r1 ← r1*c
load r2, r1 r1 ← *r2
store r2, r1 *r1 ← r2
movem r2, r1 *r1 ← *r2
movex r3, r2, r1 *r1 ← *(r2+r3)

CS 412/413 Spring 2008 Introduction to Compilers 5

Example

• Consider the computation:
a[i+1] = b[j]

• Assume a,b, i, j are global variables
register ra holds address of a
register rb holds address of b
register ri holds value of i
register rj holds value of j

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 6

Possible Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Load value b[j]: load rb, r1

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: store r1, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 7

Another Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movem rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 8

Yet Another Translation

• Index of b[j]: mulc 4, rj

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movex rj, rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 9

Issue: Instruction Costs
• Different machine instructions have different costs

– Time cost: how fast instructions are executed
– Space cost: how much space instructions take

• Example: cost = number of cycles
add r2, r1 cost=1
mulc c, r1 cost=10
load r2, r1 cost=3
store r2, r1 cost=3
movem r2, r1 cost=4
movex r3, r2, r1 cost=5

• Goal: find translation with smallest cost

CS 412/413 Spring 2008 Introduction to Compilers 10

How to Solve the Problem?

• Difficulty: low-level IR instruction
matched by a machine instructions
may not be adjacent

• Example: movem rb, ra

• Idea: use tree-like representation!
• Easier to detect matching

instructions

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 11

Tree Representation

a

4

*

+

store

b

j 4

*

+

load

• Goal: determine parts of the tree that
correspond to machine instructions

a[i+1] = b[j]

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 12

Tiles

• Tile = tree patterns (subtrees)
corresponding to machine instructions

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2008 Introduction to Compilers 13

Tiling

• Tiling = cover the tree with disjoint tiles

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Assembly:

mulc 4, rj
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra

Assembly:

mulc 4, rj
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra

CS 412/413 Spring 2008 Introduction to Compilers 14

Tiling

store rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

a

4

*

+

store

b

j 4

*

+

load

i 1

+

movex rj, rb, ra

CS 412/413 Spring 2008 Introduction to Compilers 15

Directed Acyclic Graphs
• Tree representation: appropriate for instruction selection

– Tiles = subtrees → machine instructions

• DAG = more general structure for representing instructions
– Common sub-expressions represented by the same node
– Tile the expression DAG

• Example:
t = y+1
y = z*t
t = t+1
z = t*y y 1

+z

* +

*

CS 412/413 Spring 2008 Introduction to Compilers 16

Big Picture
• What the compiler has to do:

1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2008 Introduction to Compilers 17

DAG Construction

• Input: sequence of low IR instructions in basic block
• Output: expression DAG for the block

• Idea:
– Each node is labeled with either a variable, constant, or

operator, e.g., , , or

– Each node is annotated with variables that hold the value,
e.g.,

– Build DAG bottom-up

y 1 +

+
t

DAG Construction Algorithm
for each instruction I in basic block in execution order

if I has form x = y op z;
– Find a dag node annotated y, or create one; call it ny

– Find a dag node annotated z, or create one; call it nz

– Find a dag node labeled op with operands ny and nz, or create a
one; call it nx

– Remove annotation x from any node on which it appears.
– Add x to list of annotations for node nx

else if I has form x = y;
– Find a dag node annotated y, or create one; call it ny

– Add x to list of annotations of node ny

else …

CS 412/413 Spring 2008 Introduction to Compilers 18

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 19

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 20

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y
y

1

+
t

1

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 21

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y
y

1

+
t, w

1

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 22

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+
t, w

z
z

*
y

1

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 23

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z
z

*
y

+
t

1

w

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 24

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

*
y

+
t

*
z

1

w

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 25

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

*
y

+
t

*
z, w

1

DAG Construction Example
Basic block

CS 412/413 Spring 2008 Introduction to Compilers 26

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

* +

*
w

1
If only w is live at block exit

	CS412/CS413
	Backend Optimizations
	Instruction Selection
	Instruction Selection
	Example
	Possible Translation
	Another Translation
	Yet Another Translation
	Issue: Instruction Costs
	How to Solve the Problem?
	Tree Representation
	Tiles
	Tiling
	Tiling
	Directed Acyclic Graphs
	Big Picture
	DAG Construction
	DAG Construction Algorithm
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example
	DAG Construction Example

