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Backend Optimizations

• Instruction selection
– Translate low-level IR to assembly instructions
– A machine instruction may model multiple IR instructions
– Especially applicable to CISC architectures

• Register Allocation
– Place variables into registers
– Avoid spilling variables on stack
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Instruction Selection
• Different sets of instructions in low-level IR and in the 

target machine
• Instruction selection = translate low-level IR to 

assembly instructions on the target machine

• Straightforward solution: translate each low-level IR 
instruction to a sequence of machine instructions

• Example: 

x = y + z

mov y, r1
mov z, r2
add r2, r1
mov r1, x
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Instruction Selection
• Problem: straightforward translation is inefficient

– One machine instruction may perform the computation in 
multiple low-level IR instructions

– Excessive memory traffic

• Consider a machine that includes the following instructions:
add r2, r1 r1 ← r1+r2
mulc c, r1 r1 ← r1*c
load r2, r1 r1 ← *r2
store r2, r1 *r1 ← r2
movem r2, r1 *r1 ← *r2 
movex r3, r2, r1 *r1 ← *(r2+r3)
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Example

• Consider the computation: 
a[i+1] = b[j]

• Assume a,b, i, j are global variables
register ra holds address of a
register rb holds address of b
register ri holds value of i
register rj holds value of j

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Possible Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Load value b[j]: load rb, r1

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: store r1, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Another Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movem rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Yet Another Translation

• Index of b[j]: mulc 4, rj

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movex rj, rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Issue: Instruction Costs
• Different machine instructions have different costs

– Time cost: how fast instructions are executed
– Space cost: how much space instructions take

• Example: cost = number of cycles
add r2, r1 cost=1 
mulc c, r1 cost=10
load r2, r1 cost=3
store r2, r1 cost=3
movem r2, r1 cost=4
movex r3, r2, r1 cost=5

• Goal: find translation with smallest cost
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How to Solve the Problem?

• Difficulty: low-level IR instruction 
matched by a machine instructions 
may not be adjacent

• Example: movem rb, ra

• Idea: use tree-like representation!
• Easier to detect matching 

instructions

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Tree Representation

a

4

*

+

store

b

j 4

*

+

load

• Goal: determine parts of the tree that 
correspond to machine instructions

a[i+1] = b[j]

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Tiles

• Tile = tree patterns (subtrees) 
corresponding to machine instructions

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3
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Tiling

• Tiling = cover the tree with disjoint tiles

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Assembly:

mulc 4, rj 
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra

Assembly:

mulc 4, rj 
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra
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Tiling

store rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

a

4

*

+

store

b

j 4

*

+

load

i 1

+

movex rj, rb, ra
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Directed Acyclic Graphs 
• Tree representation: appropriate for instruction selection

– Tiles = subtrees → machine instructions

• DAG = more general structure for representing instructions
– Common sub-expressions represented by the same node
– Tile the expression DAG

• Example:
t = y+1
y = z*t
t = t+1
z = t*y y 1

+z

* +

*
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Big Picture
• What the compiler has to do:

1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- Maximal munch algorithm
- Dynamic programming algorithm



CS 412/413   Spring 2008 Introduction to Compilers 17

DAG Construction

• Input: sequence of low IR instructions in basic block
• Output: expression DAG for the block

• Idea:
– Each node is labeled with either a variable, constant, or 

operator, e.g.,        ,       , or 

– Each node is annotated with variables that hold the value, 
e.g.,

– Build DAG bottom-up

y 1 +

+
t



DAG Construction Algorithm
for each instruction I in basic block in execution order

if I has form x = y op z;
– Find a dag node annotated y, or create one; call it ny

– Find a dag node annotated z, or create one; call it nz

– Find a dag node labeled op with operands ny and nz, or create a 
one; call it nx

– Remove annotation x from any node on which it appears.
– Add x to list of annotations for node nx

else if I has form x = y;
– Find a dag node annotated y, or create one; call it ny

– Add x to list of annotations of node ny

else …
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DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y
y

1

+
t

1



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y
y

1

+
t, w

1



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+
t, w

z
z

*
y

1



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z
z

*
y

+
t

1

w



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

*
y

+
t

*
z

1

w



DAG Construction Example
Basic block

CS 412/413   Spring 2008 Introduction to Compilers 25

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

*
y

+
t

*
z, w

1



DAG Construction Example
Basic block
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t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z

y 1

+z

* +

*
w

1
If only w is live at block exit
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