
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 30: Loop Optimizations
and Pointer Analysis

07 Apr 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Loop optimizations

• Now we know which are the loops

• Next: optimize these loops
– Loop invariant code motion [last time]
– Strength reduction of induction variables
– Induction variable elimination

CS 412/413 Spring 2008 Introduction to Compilers 3

Induction Variables
• An induction variable is a variable in a loop,

whose value is a function of the loop iteration
number v = f(i)

• In compilers, this a linear function:
f(i) = c*i + d

• Observation: linear combinations of linear
functions are linear functions
– Consequence: linear combinations of induction

variables are induction variables

CS 412/413 Spring 2008 Introduction to Compilers 4

Families of Induction Variables
• Basic induction variable: a variable whose only definition in the

loop body is of the form
i = i + c

where c is a loop-invariant value

• Derived induction variables: Each basic induction variable i defines
a family of induction variables Family(i)
– i ∈ Family(i)
– k ∈ Family(i) if there is only one definition of k in the loop body , and it

has the form k = c*j or k=j+c, where
(a) j ∈ Family(i)
(b) c is loop invariant
(c) The only definition of j that reaches the definition of k is in the loop
(d) There is no definition of i between the definitions of j and k

Representation
• Representation of induction variables in family i by triples:

– Denote basic induction variable i by <i, 1, 0>
– Denote induction variable k=i*a+b by triple <i, a, b>

CS 412/413 Spring 2008 Introduction to Compilers 5

Finding Induction Variables
Scan loop body to find all basic induction variables

do
Scan loop to find all variables k with one assignment of form k =

j*b, where j is an induction variable <i,c,d>, and make k an
induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one assignment of form k =
j±b where j is an induction variable with triple <i,c,d>, and
make k an induction variable with triple <i,c,b±d>

until no more induction variables found

CS 412/413 Spring 2008 Introduction to Compilers 6

CS 412/413 Spring 2008 Introduction to Compilers 7

Strength Reduction
• Basic idea: replace expensive operations (multiplications) with

cheaper ones (additions) in definitions of induction variables

while (i<10) {
j = …; // <i,3,1>
a[j] = a[j] –2;
i = i+2;

}

• Benefit: cheaper to compute s = s+6 than j = 3*i
– s = s+6 requires an addition
– j = 3*i requires a multiplication

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;
i = i+2;
s= s+6;

}

CS 412/413 Spring 2008 Introduction to Compilers 8

General Algorithm
• Algorithm:

For each induction variable j with triple <i,a,b>
whose definition involves multiplication:

1. create a new variable s
2. replace definition of j with j=s
3. immediately after i=i+c, insert s = s+a*c

(here a*c is constant)
4. insert s = a*i+b into preheader

• Correctness: transformation maintains invariant s = a*i+b

CS 412/413 Spring 2008 Introduction to Compilers 9

Strength Reduction
• Gives opportunities for copy propagation, dead code

elimination

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6;

}

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;
i = i+2;
s= s+6;

}

CS 412/413 Spring 2008 Introduction to Compilers 10

Induction Variable Elimination
• Idea: eliminate each basic induction variable whose only uses

are in loop test conditions and in their own definitions i = i+c
- rewrite loop test to eliminate induction variable

• When are induction variables used only in loop tests?
– Usually, after strength reduction
– Use algorithm from strength reduction even if definitions

of induction variables don’t involve multiplications

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6;

}

CS 412/413 Spring 2008 Introduction to Compilers 11

Induction Variable Elimination
• Rewrite test condition using derived induction variables
• Remove definition of basic induction variables (if not used

after the loop)

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;
s= s+6;

}

s = 3*i+1;
while (s<31) {

a[s] = a[s] –2;
s= s+6;

}

CS 412/413 Spring 2008 Introduction to Compilers 12

Induction Variable Elimination
For each basic induction variable i whose only uses are

– The test condition i < u
– The definition of i: i = i + c

• Take a derived induction variable k in family i, with
triple <i,c,d>

• Replace test condition i < u with k < c*u+d
• Remove definition i = i+c if i is not live on loop exit

CS 412/413 Spring 2008 Introduction to Compilers 13

Where We Are
• Defined dataflow analysis framework

• Used it for several analyses
– Live variables
– Available expressions
– Reaching definitions
– Constant folding

• Loop transformations
– Loop invariant code motion
– Induction variables

• Next:
– Pointer alias analysis

CS 412/413 Spring 2008 Introduction to Compilers 14

Pointer Alias Analysis
• Most languages use variables containing addresses

– E.g. pointers (C,C++), references (Java), call-by-
reference parameters (Pascal, C++, Fortran)

• Pointer aliases: multiple names for the same memory
location, which occur when dereferencing variables that hold
memory addresses

• Problem:
– Don’t know what variables read and written by accesses

via pointer aliases (e.g. *p=y; x=*p; p->f=y; x=p->f;
etc.)

– Need to know accessed variables to compute dataflow
information after each instruction

CS 412/413 Spring 2008 Introduction to Compilers 15

Pointer Alias Analysis
• Worst case scenarios

– *p = y may write any memory location
– x = *p may read any memory location

• Such assumptions may affect the precision of other analyses

• Example1: Live variables
before any instruction x = *p, all the variables may be live

• Example 2: Constant folding
a = 1; b = 2;*p = 0; c = a+b;

• c = 3 at the end of code only if *p is not an alias for a or b!

• Conclusion: precision of result for all other analyses depends
on the amount of alias information available
- hence, it is a fundamental analysis

CS 412/413 Spring 2008 Introduction to Compilers 16

Alias Analysis Problem

• Goal: for each variable v that may hold an address,
compute the set Ptr(v) of possible targets of v
– Ptr(v) is a set of variables (or objects)
– Ptr(v) includes stack- and heap-allocated variables (objects)

• Is a “may” analysis: if x ∈ Ptr(v), then v may hold the
address of x in some execution of the program

• No alias information: for each variable v, Ptr(v) = V,
where V is the set of all variables in the program

CS 412/413 Spring 2008 Introduction to Compilers 17

Simple Alias Analyses
• Address-taken analysis:

– Consider AT = set of variables whose addresses are taken
– Then, Ptr(v) = AT, for each pointer variable v
– Addresses of heap variables are always taken at allocation

sites (e.g., x = new int[2]; x=malloc(8);)
– Hence AT includes all heap variables

• Type-based alias analysis:
– If v is a pointer (or reference) to type T, then Ptr(v) is the

set of all variables of type T
– Example: p->f and q->f can be aliases only if p and q are

references to objects of the same type
– Works only for strongly-typed languages

CS 412/413 Spring 2008 Introduction to Compilers 18

Dataflow Alias Analysis
• Dataflow analysis: for each variable v, compute points-

to set Ptr(v) at each program point

• Dataflow information: set Ptr(v) for each variable v
– Can be represented as a graph G ⊆ 2 V x V

– Nodes = V (program variables)

– There is an edge v→u if u ∈ Ptr(v)

x y
z

t

Ptr(x) = {y}
Ptr(y) = {z,t}

CS 412/413 Spring 2008 Introduction to Compilers 19

Dataflow Alias Analysis
• Dataflow Lattice: (2 V x V, ⊇)

– V x V represents “every variable may point to every var.”
– “may” analysis: top element is ∅, meet operation is ⋃

• Transfer functions: use standard dataflow transfer functions:
out[I] = (in[I]-kill[I]) U gen[I]

p = addr q kill[I]={p} x V gen[I]={<p,q>}
p = q kill[I]={p} x V gen[I]={p} x Ptr(q)
p = *q kill[I]={p} x V gen[I]={p} x Ptr(Ptr(q))
*p = q kill[I]= … gen[I]=Ptr(p) x Ptr(q)
For all other instruction, kill[I] = {}, gen[I] = {}

• Transfer functions are monotonic, but not distributive!

CS 412/413 Spring 2008 Introduction to Compilers 20

Alias Analysis Example

x=&a;
y=&b;
c=&i;
if(i) x=y;
*x=c;

x=&a;
y=&b;
c=&i;
if(i) x=y;
*x=c;

Program

*x=c

x=&a
y=&b
c=&i
if(i)

x=y

CFG Points-to
Graph

(at the end of program)

x a

by
i

c

CS 412/413 Spring 2008 Introduction to Compilers 21

Alias Analysis Uses
• Once alias information is available, use it in other

dataflow analyses

• Example: Live variable analysis
Use alias information to compute use[I] and def[I] for
load and store statements:

x = *y use[I] = {y} ⋃ Ptr(y) def[I]={x}
*x = y use[I] = {x,y} def[I]=Ptr(x)

	CS412/CS413
	Loop optimizations
	Induction Variables
	Families of Induction Variables
	Representation
	Finding Induction Variables
	Strength Reduction
	General Algorithm
	Strength Reduction
	Induction Variable Elimination
	Induction Variable Elimination
	Induction Variable Elimination
	Where We Are
	Pointer Alias Analysis
	Pointer Alias Analysis
	Alias Analysis Problem
	Simple Alias Analyses
	Dataflow Alias Analysis
	Dataflow Alias Analysis
	Alias Analysis Example
	Alias Analysis Uses

