
CS 412/413 Spring 2008 Introduction to Compilers 1

Lecture 29: Control Flow Analysis
and Loop Optimization

4 Apr 08

CS412/413

Introduction to Compilers
Tim Teitelbaum

Agenda
• Discovering loops in control-flow graphs

– Dominators
• Compute dominators by data-flow analysis

• Loop invariant code motion
– Discovering loop-invariant definitions

• Application of reaching definitions

– Validating movement of loop-invariant definition
• Application of live variable analysis
• Application of reaching definitions

CS 412/413 Spring 2008 Introduction to Compilers 2

CS 412/413 Spring 2008 Introduction to Compilers 3

Program Loops
• Loop = a computation repeatedly executed until a

terminating condition is reached

• High-level loop constructs:
– While loop: while(E) S
– Do-while loop: do S while(E)
– For loop: for(i=1; i<=u; i+=c) S

• Why are loops important:
– Most of the execution time is spent in loops
– Typically: 90/10 rule, 10% code is a loop

• Therefore, loops are important targets of optimizations

CS 412/413 Spring 2008 Introduction to Compilers 4

Detecting Loops

• Need to identify loops in the program
– Easy to detect loops in high-level constructs
– Harder to detect loops in low-level code or in general

control-flow graphs

• Examples where loop detection is difficult:
– Languages with unstructured “goto” constructs:

structure of high-level loop constructs may be
destroyed

– Optimizing Java bytecodes (without high-level source
program): only low-level code is available

CS 412/413 Spring 2008 Introduction to Compilers 5

• Goal: identify loops in the control flow graph

• A loop in the CFG:
– Is a set of CFG nodes (basic blocks)
– Has a loop header such that

control to all nodes in the loop
always goes through the header

– Has a back edge from one of its
nodes to the header

Control-Flow Analysis

CS 412/413 Spring 2008 Introduction to Compilers 6

• Goal: identify loops in the control flow graph

• A loop in the CFG:
– Is a set of CFG nodes (basic blocks)
– Has a loop header such that

control to all nodes in the loop
always goes through the header

– Has a back edge from one of its
nodes to the header

Control-Flow Analysis

CS 412/413 Spring 2008 Introduction to Compilers 7

Dominators
• Use concept of dominators in CFG to identify loops
• Node d dominates node n if all paths from the entry

node to n go through d

• Intuition:
– Header of a loop dominates all nodes in loop body
– Back edges = edges whose heads dominate their tails
– Loop identification = back edge identification

1

2 3

4

Every node dominates itself
1 dominates 1, 2, 3, 4
2 doesn’t dominate 4
3 doesn’t dominate 4

CS 412/413 Spring 2008 Introduction to Compilers 8

Immediate Dominators
• Properties:

1. CFG entry node n0 dominates all CFG nodes
2. If d1 and d2 dominate n, then either
– d1 dominates d2, or
– d2 dominates d1

• d strictly dominates n if d dominates n and d≠n
• The immediate dominator idom(n) of a node n is the

unique last strict dominator on any path from n0 to n

CS 412/413 Spring 2008 Introduction to Compilers 9

Dominator Tree
• Build a dominator tree as follows:

– Root is CFG entry node n0

– m is child of node n iff n=idom(m)

• Example: 1

2

3 4

5

6

7

1

2

7 3 4 5

6

CS 412/413 Spring 2008 Introduction to Compilers 10

Computing Dominators
• Formulate problem as a system of constraints:

– Define dom(n) = set of nodes that dominate n
– dom(n0)= {n0}

– dom(n) = ∩{ dom(m) | m ∈ pred(n) } ∪ {n}
i.e, the dominators of n are the dominators of all of n’s predecessors

and n itself

CS 412/413 Spring 2008 Introduction to Compilers 11

Dominators as a Dataflow Problem
• Let N = set of all basic blocks
• Lattice: (2N, ⊆); has finite height
• Meet is set intersection, top element is N
• Is a forward dataflow analysis
• Dataflow equations:

out[B] = FB(in[B]), for all B
in[B] = ∩{out[B’] | B’∈pred(B)}, for all B
in[Bs] = {}

• Transfer functions: FB(X) = X ⋃ {B}
- are monotonic and distributive

• Iterative solving of dataflow equation:
- terminates
- computes MOP solution

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅

CS 412/413 Spring 2008 Introduction to Compilers 12

Natural Loops
• Back edge: edge n→h such that h dominates n
• Natural loop of a back edge n→h:

– h is loop header
– Set of loop nodes is set of all nodes that can reach n without

going through h
• Algorithm to identify natural loops in CFG:

– Compute dominator relation
– Identify back edges
– Compute the loop for each back edge

for each node h in dominator tree
for each node n for which there exists a back edge n→h

define the loop with
header h
back edge n→h
body consisting of all nodes reachable from n by a
depth first search backwards from n that stops at h

CS 412/413 Spring 2008 Introduction to Compilers 13

Disjoint and Nested Loops
• Property: for any two natural loops in the flow graph,

one of the following is true:
1. They are disjoint
2. They are nested
3. They have the same header

• Eliminate alternative 3: if two loops have the same
header and none is nested in the other, combine all
nodes into a single loop

1

2 3

Two loops: {1,2} and {1,3}
Combine into one loop: {1,2,3}

CS 412/413 Spring 2008 Introduction to Compilers 14

Loop Preheader
• Several optimizations add code before header
• Insert a new basic block (called preheader) in

the CFG to hold this code

3

4 5

6

1 2

3

4 5

6

1 2

CS 412/413 Spring 2008 Introduction to Compilers 15

Loop optimizations

• Now we know the loops

• Next: optimize these loops
– Loop invariant code motion
– Strength reduction of induction variables
– Induction variable elimination

CS 412/413 Spring 2008 Introduction to Compilers 16

Loop Invariant Code Motion
• Idea: if a computation produces same result in all loop

iterations, move it out of the loop

• Example: for (i=0; i<10; i++)
buf[i] = 10*i + x*x;

• Expression x*x produces the same result in each
iteration; move it out of the loop:

t = x*x;
for (i=0; i<10; i++)

buf[i] = 10*i + t;

CS 412/413 Spring 2008 Introduction to Compilers 17

Loop Invariant Computation

• An instruction a = b OP c is loop-invariant if each
operand is:
– Constant, or
– Has all definitions outside the loop, or
– Has exactly one definition, and that is a loop-invariant

computation

• Reaching definitions analysis computes all the
definitions of x and y that may reach t = x OP y

CS 412/413 Spring 2008 Introduction to Compilers 18

Algorithm

INV = ∅
repeat

for each instruction I in loop such that I ∉ INV
if operands are constants, or operands

have definitions outside the loop, or

operands have exactly one definition d ∈ INV
then INV = INV U {I}

until no changes in INV

CS 412/413 Spring 2008 Introduction to Compilers 19

Code Motion

• Next: move loop-invariant code out of the loop
• Suppose a = b OP c is loop-invariant
• We want to hoist it out of the loop

Valid Code Motion
• Code motion of a definition d: a = b OP c to pre-header

is valid if:
1. Definition d dominates all loop exits where a is live

– Use dominator tree to check whether each loop exit is
dominated by d

2. There is no other definition of a in loop
– Scan all body for any other definitions of a

3. All uses of a in loop can only be reached from
definition d
– Consult reaching definitions at each use of a for any definitions

of a other than d

CS 412/413 Spring 2008 Introduction to Compilers 20

Valid Code Motion
• Invalid example 1: a = x*x; does not dominate break to use of a

a = 0;
for (i=0; i<10; i++)

if (f(i)) a = x*x; else break;
b = a;

• Invalid example 2: there is another definition of a in loop
for (i=0; i<10; i++)

if (f(i)) a = x*x;
else a = 0;

• Invalid example 3: use of a in loop can be reached from a=0;
a = 0;
for (i=0; i<10; i++)

if (f(i)) a = x*x;
else buf[i] = a;

CS 412/413 Spring 2008 Introduction to Compilers 21

CS 412/413 Spring 2008 Introduction to Compilers 22

Other Issues
• Preserve dependencies between loop-invariant instructions

when hoisting code out of the loop
for (i=0; i<N; i++) { x = y+z;

x = y+z; t = x*x;
a[i] = 10*i + x*x; for(i=0; i<N; i++)

} a[i] = 10*i + t;
• Nested loops: apply loop-invariant code motion algorithm

multiple times

for (i=0; i<N; i++)
for (j=0; j<M; j++)
a[i][j] = x*x + 10*i + 100*j;

t1 = x*x;
for (i=0; i<N; i++) {

t2 = t1+ 10*i;
for (j=0; j<M; j++)

a[i][j] = t2 + 100*j; }

	Agenda
	Program Loops
	Detecting Loops
	Control-Flow Analysis
	Control-Flow Analysis
	Dominators
	Immediate Dominators
	Dominator Tree
	Computing Dominators
	Dominators as a Dataflow Problem
	Natural Loops
	Disjoint and Nested Loops
	Loop Preheader
	Loop optimizations
	Loop Invariant Code Motion
	Loop Invariant Computation
	Algorithm
	Code Motion
	Valid Code Motion
	Valid Code Motion
	Other Issues

