CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 28: Dataflow Analysis Instances 2 Apr 08

Dataflow Analysis

- Dataflow analysis
- sets up system of equations
- iteratively computes MFP
- Terminates because transfer functions are monotonic and lattice has finite height
- Other possible solutions: FP, MOP, IDEAL
- All are safe solutions, but some are more precise: FP $\subseteq M F P \sqsubseteq$ MOP ㄷ IDEAL
- MFP = MOP if transfer functions are distributive
- MOP and IDEAL are intractable
- Compilers use dataflow analysis and MFP

Dataflow Analysis Instances

- Apply dataflow framework to several analysis problems:
- Live variable analysis
- Available expressions
- Reaching definitions
- Constant folding
- Discuss:
- Implementation issues
- Classification of dataflow analyses

Problem 1: Live Variables

- Compute live variables at each program point
- Live variable = variable whose value may be used later, in some execution of the program
- Dataflow information: sets of live variables
- Example: variables $\{x, z\}$ may be live at program point p
- Is a backward analysis
- Let $\mathrm{V}=$ set of all variables in the program
- Lattice (L, ㄷ), where:
- $L=2^{V}$ (power set of V, i.e., set of all subsets of V)
- Partial order ㄷ is set inclusion: \supseteq

$$
\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \text { iff } \mathrm{S}_{1} \supseteq \mathrm{~S}_{2}
$$

LV: The Lattice

- Consider set of variables $V=\{x, y, z\}$
- Partial order: \supseteq
- Set V is finite implies lattice has finite height
- Meet operator: U (set union: out[B] is union of in[$\left.B^{\prime}\right]$, for all $B^{\prime} \in \operatorname{succ}(B)$
- Top element: \varnothing (empty set)

- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise

LV: Dataflow Equations

- Equations:

$$
\begin{aligned}
& \operatorname{in}[B]=F_{B}(\operatorname{out}[B]), \text { for all } B \\
& \operatorname{out}[B]=U\left\{\operatorname{in}\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{succ}(B)\right\}, \text { for all } B \\
& \operatorname{out}\left[B_{e}\right]=X_{0}
\end{aligned}
$$

- Meaning of union meet operator:
"A variable is live at the end of a basic block B if it is live at the beginning of one of its successor blocks"

LV: Transfer Functions

- Transfer functions for basic blocks are composition of transfer functions of instructions in the block
- Define transfer functions for instructions
- General form of transfer functions:

$$
F_{1}(X)=(X-\operatorname{def}[I]) \cup \text { use[I] }
$$

where:

$$
\begin{aligned}
& \operatorname{def}[I]=\text { set of variables defined (written) by I } \\
& \text { use[I] = set of variables used (read) by I }
\end{aligned}
$$

- Meaning of transfer functions:
"Variables live before instruction I include: (1) variables live after I, but not written by I, and (2) variables used by I"

LV: Transfer Functions

- Define def/use for each type of instruction

1 is $x=y$ OP z	use[I] $=\{y, z\}$	$\operatorname{def}[1]=\{x\}$
if I is $x=O P y$:	use[I] $=\{y\}$	$\operatorname{def}[1]=\{x\}$
if I is $x=y$	use[I] $=\{y\}$	$\operatorname{def}[1]=\{x\}$
if I is $\mathrm{x}=$ addr y :	use[I$]=\{ \}$	$\operatorname{def}[1]=\{x\}$
if I is if (x)	use[I] $=\{\mathrm{x}\}$	$\operatorname{def}[1]=\{ \}$
if I is return x	use[I] $=\{\mathrm{x}\}$	$\operatorname{def}[1]=\{ \}$
if I is $\mathrm{X}=\mathrm{f}\left(\mathrm{y}_{1}, \ldots, y_{n}\right)$:	use[I] $=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$	
	$\operatorname{def}[1]=\{x\}$	

- Transfer functions $F_{1}(X)=(X-\operatorname{def}[I]) \cup$ use[I]
- For each F_{1}, def[I] and use[I] are constants: they don't depend on input information X

LV: Distributivity

- Are transfer functions: $F_{1}(X)=(X-\operatorname{def}[I]) \cup$ use[I] distributive?
- Since def[I] is constant: X - def[I] is distributive: $\left(X_{1} \cup X_{2}\right)-\operatorname{def}[I]=\left(X_{1}-\operatorname{def}[I]\right) \cup\left(X_{2}-\operatorname{def}[I]\right)$ because: $(a \cup b)-c=(a-c) \cup(b-c)$
- Since use[I] is constant: $Y \cup$ use[I] is distributive: $\left(Y_{1} \cup Y_{2}\right) \cup$ use[I] $=\left(Y_{1} \cup\right.$ use[I]) $\cup\left(Y_{2} \sqcap\right.$ use[I]) because: $(\mathrm{a} \cup \mathrm{b}) \cup \mathrm{c}=(\mathrm{a} \cup \mathrm{c}) \cup(\mathrm{b} \cup \mathrm{c})$
- Put pieces together: $F_{1}(X)$ is distributive

$$
F_{1}\left(X_{1} \cup X_{2}\right)=F_{1}\left(X_{1}\right) \cup F_{1}\left(X_{2}\right)
$$

Live Variables: Summary

- Lattice: $\left(2^{\vee}, \supseteq\right)$; has finite height
- Meet is set union, top is empty set
- Is a backward dataflow analysis
- Dataflow equations:

$$
\begin{aligned}
& \operatorname{in}[B]=F_{B}(\operatorname{out}[B]), \text { for all } B \\
& \operatorname{out}[B]=U\left\{\operatorname{in}\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{succ}(B)\right\} \text {, for all } B \\
& \operatorname{out}\left[B_{e}\right]=X_{0}
\end{aligned}
$$

- Transfer functions: $F_{1}(X)=(X$ - def[I]) U use[I]
- are monotonic and distributive
- Iterative solving of dataflow equation:
- terminates
- computes MOP solution

Problem 2: Available Expressions

- Compute available expressions at each program point
- Available expression = expression evaluated in all program executions, and its value would be the same if re-evaluated
- Is similar to available copies for constant propagation
- Dataflow information: sets of available expressions
- Example: expressions $\{x+y, y-z\}$ are available at point p
- Is a forward analysis
- Let $\mathrm{E}=$ set of all expressions in the program
- Lattice (L, 드), where:
- $L=2^{E}$ (power set of E, i.e., set of all subsets of E)
- Partial order \subseteq is set inclusion: \supseteq

$$
\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \text { iff } \mathrm{S}_{1} \supseteq \mathrm{~S}_{2}
$$

AE: The Lattice

- Consider set of expressions $=\left\{x^{*} z, x+y, y-z\right\}$
- Denote $e=x^{*} z, f=x+y, g=y-z$
- Partial order: \subseteq
- Set E is finite implies lattice has finite height
- Meet operator: \cap (set intersection)
- Top element: $\{\mathrm{e}, \mathrm{f}, \mathrm{g}\}$ (set of all expressions)

- Larger sets of available expressions = more precise analysis
- No available expressions = least precise

AE: Dataflow Equations

- Equations:

$$
\begin{aligned}
& \operatorname{out}[B]=F_{B}(\operatorname{in}[B]), \text { for all } B \\
& \operatorname{in}[B]=\cap\left\{\operatorname{out}\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\}, \text { for all } B \\
& \operatorname{in}\left[B_{s}\right]=X_{0}
\end{aligned}
$$

- Meaning of intersection meet operator:
"An expression is available at entry of block B if it is available at exit of all predecessor nodes"

AE: Transfer Functions

- Define transfer functions for instructions
- General form of transfer functions:

$$
F_{1}(X)=(X-\text { kill }[I]) \cup \text { gen }[I]
$$

where:

$$
\begin{aligned}
& \text { kill[I] = expressions "killed" by I } \\
& \text { gen[I] = new expressions "generated" by I }
\end{aligned}
$$

- Note: this kind of transfer function is typical for many dataflow analyses!
- Meaning of transfer functions: "Expressions available after instruction I include: (1) expressions available before I, but not killed by I, and (2) expressions generated by I"

AE: Transfer Functions

- Define kill/gen for each type of instruction

if I is $\mathrm{x}=\mathrm{y}$ OP z : gen[I] $=\{y \mathrm{OP} z\}$	$\operatorname{kill}[1]=\{E \mid x \in E\}$
if l is $\mathrm{x}=\mathrm{OP} \mathrm{y}$: $\mathrm{gen}[1]=\{\mathrm{OP} z\}$	$\operatorname{kill}[1]=\{\mathrm{E} \mid \mathrm{X} \in \mathrm{E}\}$
1 is $x=y \quad: \operatorname{gen}[1]=\{ \}$	kill $[1]=\{E \mid x \in E\}$
1 is $x=\operatorname{addr} y$: gen $[1]=\{ \}$	kill $[1]=\{E \mid x \in E\}$
if I is if $(\mathrm{x}) \quad: \mathrm{gen}[1]=\{ \}$	kill $[1]=\{ \}$
if I is return x : gen[1]=\{\}	kill $[1]=\{ \}$
if I is $\mathrm{X}=\mathrm{f}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$: gen $[\mathrm{I}]=\{ \}$	kill $[1]=\{E \mid x \in E\}$

- Transfer functions $F_{1}(X)=(X-$ kill[I] $) \cup$ gen[I]
- ... how about $x=x$ OP y ?

Available Expressions: Summary

- Lattice: $\left(2^{\mathrm{E}}, \subseteq\right)$; has finite height
- Meet is set intersection, top element is E
- Is a forward dataflow analysis
- Dataflow equations:

$$
\begin{aligned}
& \text { out }[B]=F_{B}(\text { in }[B]), \text { for all } B \\
& \operatorname{in}[B]=\cap\left\{o u t\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\} \text {, for all } B \\
& \operatorname{in}\left[B_{s}\right]=x_{0}
\end{aligned}
$$

- Transfer functions: $F_{1}(X)=(X-$ kill[I]) U gen[I]
- are monotonic and distributive
- Iterative solving of dataflow equation:
- terminates
- computes MOP solution

Problem 3: Reaching Definitions

- Compute reaching definitions for each program point
- Reaching definition = definition of a variable whose assigned value may be observed at current program point in some execution of the program
- Dataflow information: sets of reaching definitions
- Example: definitions $\{d 2, d 7\}$ may reach program point p
- Is a forward analysis
- Let $\mathrm{D}=$ set of all definitions (assignments) in the program
- Lattice (D, 드), where:
- $L=2^{D}$ (power set of D)
- Partial order드 is set inclusion: \supseteq

$$
\mathrm{S}_{1} \subseteq \mathrm{~S}_{2} \text { iff } \mathrm{S}_{1} \supseteq \mathrm{~S}_{2}
$$

RD: The Lattice

- Consider set of expressions $=\{d 1, d 2, d 3\}$ where d1: $x=y, d 2: x=x+1, d 3: z=y-x$
- Partial order: \supseteq
- Set D is finite implies lattice has finite height
- Meet operator: U (set union)
- Top element: \varnothing (empty set)

- Smaller sets of reaching definitions = more precise analysis
- All definitions may reach current point $=$ least precise

RD: Dataflow Equations

- Equations:

$$
\begin{aligned}
& \operatorname{out}[B]=F_{B}(\operatorname{in}[B]), \text { for all } B \\
& \operatorname{in}[B]=U\left\{\operatorname{out}\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\}, \text { for all } B \\
& \operatorname{in}\left[B_{s}\right]=X_{0}
\end{aligned}
$$

- Meaning of intersection meet operator:
"A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes"

RD: Transfer Functions

- Define transfer functions for instructions
- General form of transfer functions:

$$
F_{1}(X)=(X-\operatorname{kill}[I]) \cup \text { gen }[I]
$$

where:

$$
\begin{aligned}
& \text { kill[I] = definitions "killed" by I } \\
& \text { gen[I] = definitions "generated" by I }
\end{aligned}
$$

- Meaning of transfer functions: "Reaching definitions after instruction I include: (1) reaching definitions before I, but not killed by I, and (2) reaching definitions generated by I"

RD: Transfer Functions

- Define kill/gen for each type of instruction
- If I is a definition d that defines x :

$$
\operatorname{gen}[I]=\{d\} \quad \text { kill }[I]=\left\{d^{\prime} \mid d^{\prime} \text { defines } \times\right\}
$$

- If I is not a definition:

$$
\operatorname{gen}[I]=\{ \} \quad \operatorname{kill}[I]=\{ \}
$$

- Transfer functions $F_{1}(X)=(X-$ kill[I] $) \cup$ gen[I]
- They are monotonic and distributive
- For each F_{1}, kill[I] and gen[I] are constants: they don't depend on input information X

Reaching Definitions: Summary

- Lattice: (2D, ${ }^{\mathrm{D}}$); has finite height
- Meet is set union, top element is \varnothing
- Is a forward dataflow analysis
- Dataflow equations:

```
out \([B]=F_{B}(\) in \([B])\), for all \(B\)
\(\operatorname{in}[B]=U\left\{\right.\) out \(\left.\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\}\), for all \(B\)
\(\operatorname{in}\left[B_{S}\right]=X_{0}\)
```

- Transfer functions: $F_{1}(X)=(X-$ kill[I]) U gen[I]
- are monotonic and distributive
- Iterative solving of dataflow equation:
- terminates
- computes MOP solution

Implementation

- Lattices in these analyses = power sets
- Information in these analyses = subsets of a set
- How to implement subsets?

1. Set implementation

- Data structure with as many elements as the subset has
- Usually list implementation

2. Bitvectors:

- Use a bit for each element in the overall set
- Bit for element x is: 1 if x is in subset, 0 otherwise
- Example: $S=\{a, b, c\}$, use 3 bits
- Subset $\{a, c\}$ is 101 , subset $\{b\}$ is 010 , etc.

Implementation Tradeoffs

- Advantages of bitvectors:
- Efficient implementation of set union/intersection: set union is bitwise "or" of bitvectors set intersection is bitwise "and" of bitvectors
- Drawback: inefficient for subsets with few elements
- Advantage of list implementation:
- Efficient for sparse representation
- Drawback: inefficient for set union or intersection
- In general, bitvectors work well if the size of the (original) set is linear in the program size

Problem 4: Constant Propagation

- Compute constant variables at each program point
- Constant variable = variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: $\{x=2, y=3\}$ at program point p
- Is a forward analysis
- Let $\mathrm{V}=$ set of all variables in the program, nvar $=|\mathrm{V}|$
- Let $\mathrm{N}=$ set of integer numbers
- Use a lattice over the set V x N
- Construct the lattice starting from a flat lattice for N

Flat Lattice for N

- Lattice $L=\left(N \cup\{T, \perp\}, \sqsubseteq_{F}\right)$
$-\perp \sqsubseteq_{F} n$, for all $n \in N$
- Meaning of T : "Not known to be constant"
- $\mathrm{n} \subseteq_{\mathrm{F}} \top$, for all $\mathrm{n} \in \mathrm{N}$
- Meaning of \perp : "Known to be not constant"
- Distinct integer constants are not comparable

Note: meet of any two distinct numbers is \perp
Note: meet of any number and T is that number

Constant Folding Lattice

- Flat lattice: $\mathrm{L}=\left(\mathrm{N}^{*}, ᄃ_{\mathrm{F}}\right)$, where $\mathrm{N}^{*}=\mathrm{N} \cup\{T, \perp\}$
- Constant folding lattice: $\mathrm{L}^{\prime}=\left(\mathrm{V} \rightarrow \mathrm{N}^{*}\right.$, 드 $)$
- Represent a function in $\mathrm{V} \rightarrow \mathrm{N}^{*}$ as a set of bindings:

$$
\left\{v_{1}=c_{1}, v_{2}=c_{2}, \ldots, v_{n}=c_{n}\right\}
$$

- Define partial order \sqsubseteq_{C} on $\mathrm{V} \rightarrow \mathrm{N}^{*}$ as:
$X \sqsubseteq_{C} Y$ iff $X(v) ᄃ_{F} Y(v)$ for each variable v

$$
\begin{aligned}
& x=\left\{v_{1}=c_{1}, v_{2}=c_{2}, \ldots\right\} ᄃ_{c}
\end{aligned}
$$

CF: Transfer Functions

- Transfer function for instruction I:

$$
F_{1}(X)=(X-\operatorname{kill}[I]) \cup \text { gen }[I]
$$

where:

$$
\begin{aligned}
& \text { kill[I] = constants "killed" by I } \\
& \text { gen[I] = constants "generated" by I }
\end{aligned}
$$

- If I is $\mathrm{V}=\mathrm{c}$ (constant):
- gen[I]=\{ $\mathrm{v}=\mathrm{c}\} \quad$ kill[I$]=\left\{\mathrm{v}=\mathrm{n} \mid\right.$ for all n in $\left.\mathrm{N}^{*}\right\}$
- If I is $v=u+w$:
- gen[I]=\{ $v=k\} \quad$ kill $[I]=\left\{v=n \mid\right.$ for all n in $\left.N^{*}\right\}$
- where

$$
\begin{aligned}
& k=X(u)+X(w) \text { if } X(u) \text { and } X(w) \text { are both constants } \\
& k=\quad \text { if } X(u)=\quad \text { or } X(w)= \\
& k=T \text { otherwise }
\end{aligned}
$$

CF: Transfer Functions

- Transfer function for instruction I:

$$
F_{1}(X)=(X-\text { kill }[I]) \cup \text { gen }[I]
$$

- Here gen[I] is not constant, it depends on X
- However transfer functions are monotonic
- ... but are transfer functions distributive?

CF: Distributivity?

- Example:

$$
\begin{array}{r}
\{x=2, y=3, z=T\}+\begin{array}{l}
x=2 \\
y=3
\end{array} \quad \begin{array}{l}
x=3 \\
y=2
\end{array} \\
z=x+y
\end{array}
$$

- At join point, apply meet operator
- Then use transfer function for $z=x+y$

CF: Distributivity?

- Example:

$$
\begin{gathered}
\{x=2, y=3, z=\top\}, \begin{array}{l}
x=2 \\
y=3
\end{array} \quad \begin{array}{l}
x=3 \\
y=2
\end{array} \\
z=x+y
\end{gathered}
$$

- Dataflow result (MFP) at the end: $\{x=\perp, y=\perp, z=\perp\}$
- MOP solution at the end?

CF: Distributivity?

- Example:

$$
\begin{gathered}
\{x=2, y=3, z=\top\}, \begin{array}{l}
x=2 \\
y=3
\end{array} \quad \begin{array}{l}
x=3 \\
y=2
\end{array} \\
z=x+y
\end{gathered}
$$

- Dataflow result (MFP) at the end: $\{x=\perp, y=\perp, z=\perp\}$
- MOP solution at the end: $\{x=\perp, y=\perp, z=5\}$!

CF: Distributivity?

- Example:

$$
\begin{array}{r}
\{x=2, y=3, z=\top\}-\begin{array}{l}
x=2 \\
y=3
\end{array} \quad \begin{array}{l}
x=3 \\
y=2
\end{array} \\
z=x+y
\end{array}
$$

- Reason for MOP \neq MFP:
transfer function F of $z=x+y$ is not distributive!

$$
\begin{gathered}
F\left(X_{1} \sqcap X_{2}\right) \neq F\left(X_{1}\right) \cap F\left(X_{2}\right) \\
\text { where } X_{1}=\{x=2, y=3, z=T\} \text { and } X_{2}=\{x=3, y=2, z=T\}
\end{gathered}
$$

Classification of Analyses

- Forward analyses: information flows from
- CFG entry block to CFG exit block
- Input of each block to its output
- Output of each block to input of its successor blocks
- Examples: available expressions, reaching definitions, constant folding
- Backward analyses: information flows from
- CFG exit block to entry block
- Output of each block to its input
- Input of each block to output of its predecessor blocks
- Example: live variable analysis

Another Classification

- "may" analyses:
- information describes a property that MAY hold in SOME executions of the program
- Usually: п = U, т = \varnothing
- Hence, initialize info to empty sets
- Examples: live variable analysis, reaching definitions
- "must" analyses:
- information describes a property that MUST hold in ALL executions of the program
- Usually: \quad = $\mathrm{n}_{\text {, }}$ т $=\mathrm{S}$
- Hence, initialize info to the whole set
- Examples: available expressions

