
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 27: More Dataflow Analysis
31 Mar 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Lattices

• Lattice:
– Set augmented with a partial order relation ⊑
– Each subset has a LUB and a GLB
– Can define: meet ⊓, join ⊔, top ⊤, bottom ⊥

• Use lattice to express information about a point in a
program, where S1 ⊑ S2 means “S1 is less or equally
precise as S2”

• To compute information: build constraints that
describe how the lattice information changes
– Effect of instructions: transfer functions
– Effect of control flow: meet operation

CS 412/413 Spring 2008 Introduction to Compilers 3

Transfer Functions

• Let L = dataflow information lattice

• Transfer function FI : L → L for each instruction I
– Describes how I modifies the information in the lattice
– If in[I] is info before I and out[I] is info after I, then

Forward analysis: out[I] = FI(in[I])
Backward analysis: in[I] = FI(out[I])

• Transfer function FB : L → L for each basic block B
– Is composition of transfer functions of instructions in B
– If in[B] is info before B and out[B] is info after B, then

Forward analysis: out[B] = FB(in[B])
Backward analysis: in[B] = FB(out[B])

CS 412/413 Spring 2008 Introduction to Compilers 4

Control Flow
• Meet operation models how to combine information

at split/join points in the control flow
– If in[B] is info before B and out[B] is info after B, then:

Forward analysis: in[B] = ⊓ {out[B’] | B’∈pred(B)}
Backward analysis: out[B] = ⊓ {in[B’] | B’∈succ(B)}

• Can alternatively use join operation ⊔ (equivalent to
using the meet operation ⊓ in the reversed lattice)

Treatment as F:Ln→Ln

• For a data flow analysis problem
– With lattice L
– Basic blocks B1, …, Bn

– Transfer functions F1, …, Fn

• Treat as
– Iteration of function F: Ln → Ln

⊤, F(⊤), F(F(⊤), …
– Where F summarizes effect of one sweep for all

blocks B in a given order of either
out[B] = … and in[B] =FB(out[B]) (for backward)
in[B] = … and out[B]=FB(in[B]) (for forward)

CS 412/413 Spring 2008 Introduction to Compilers 5

• Function F : L → L is monotonic if
x ⊑ y implies F(x) ⊑ F(y)

• A monotonic function is “order preserving”
• Contrast with

For all x, F(x) ⊑ x
• F is monotonic but C = F(B) ⋢ B

Monotonicity

CS 412/413 Spring 2008 Introduction to Compilers 6

A

D

CB

CS 412/413 Spring 2008 Introduction to Compilers 7

Monotonicity of Meet
• Meet operation is monotonic over L x L, i.e.,

x1 ⊑ y1 and x2 ⊑ y2 implies (x1 ⊓ x2) ⊑ (y1 ⊓ y2)

• Proof:
– any lower bound of {x1,x2} is also a lower bound of

{y1,y2}, because x1 ⊑ y1 and x2 ⊑ y2

– x1 ⊓ x2 is a lower bound of {x1,x2}
– So x1 ⊓ x2 is a lower bound of {y1,y2}
– But y1 ⊓ y2 is the greatest lower bound of {y1,y2}
– Hence (x1 ⊓ x2) ⊑ (y1 ⊓ y2)

Fixed Points
• x in lattice L is a fixed point of function F iff x=F(x)
• Tarski-Knaster Fixed Point Theorem. The fixed points of

a monotonic function on a complete lattice form a
complete lattice. In particular, there is a maximal fixed
point (MFP).

CS 412/413 Spring 2008 Introduction to Compilers 8

A

D

C

CS 412/413 Spring 2008 Introduction to Compilers 9

Chains in Lattices
• A chain in a lattice L is a totally ordered subset S of L:

x ⊑ y or y ⊑ x for any x, y ∈ S

• In other words:
Elements in a totally ordered subset S can be indexed to
form an ascending sequence:

x1 ⊑ x2 ⊑ x3 ⊑ …
or they can be indexed to form a descending sequence:

x1 ⊒ x2 ⊒ x3 ⊒ …

• Height of a lattice = size of its largest chain
• Lattice with finite height: only has finite chains

Iterative Computation of Solution
• Let F be a monotonic function over lattice L
• ⊤ ⊒ F(⊤) ⊒ F(F(⊤) ⊒ … is a descending chain
• If L has finite height, the chain ends at the

maximal fixed point of F (MFP)

CS 412/413 Spring 2008 Introduction to Compilers 10

CS 412/413 Spring 2008 Introduction to Compilers 11

• Dataflow equations may have multiple solutions

• Example: live variables
Equations: I1 = I2-{y}

I3 = (I4-{x}) U {y}
I2 = I1 U I3
I4 = {x}

Solution 1: I1={}, I2={y}, I3={y}, I4={x}

Solution 2: I1={x}, I2={x,y}, I3={y}, I4={x}

For any solution FP of the dataflow equations FP ⊑ MFP
FP is said to be a conservative or safe solution

Multiple Solutions

x = y

y = 1 I1
I2
I3
I4

∙

FB(out[P] ⊓ out[Q]) FB(out[P]) FB(out[Q])

CS 412/413 Spring 2008 Introduction to Compilers 12

• Is MFP the best solution to an analysis problem?

• Alternative to MFP: a different way to compute solution
– Let G be the control flow graph with start block B0

– For each path pn=[B0, B1, …, Bn] from B0 to block Bn
define F[pn] = FBn-1 ° FB1 ° … ° FB0

– Compute solution as
in[Bn] = ⊓ { F[pn](start value) | all paths pn from B0 to

Bn}
• This solution is the Meet Over Paths (MOP) solution for

block Bn

Meet Over Paths Solution (forward)

P Q

B

P Q

B

P Q

B

∙ ∙ ∙ ∙ ∙

∙∙∙

CS 412/413 Spring 2008 Introduction to Compilers 13

MFP versus MOP
• Precision: MOP solution is at least as precise as MFP

MFP ⊑ MOP

• Why not use MOP?
• MOP is intractable in practice

1. Exponential number of paths: for a program
consisting of a sequence of N if statement, there will 2N

paths in the control flow graph
2. Infinite number of paths: for loops in the CFG

CS 412/413 Spring 2008 Introduction to Compilers 14

Distributivity

• Function F : L → L is distributive if
F(x ⊓ y) = F(x) ⊓ F(y)

• Property: F is monotonic iff F(x ⊓ y) ⊑ F(x) ⊓ F(y)
- any distributive function is monotonic!

CS 412/413 Spring 2008 Introduction to Compilers 15

Importance of Distributivity

• Property: if transfer functions are distributive, then
the solution to the dataflow equations is identical to
the meet-over-paths solution

MFP = MOP

• For distributive transfer functions, can compute the
intractable MOP solution using the iterative fixed-
point algorithm

CS 412/413 Spring 2008 Introduction to Compilers 16

Better Than MOP?
• Is MOP the best solution to the analysis problem?

• MOP computes solution for all paths in the CFG
• There may be paths that will

never occur in any execution
• So MOP is conservative

• IDEAL = solution that takes
into account only paths that
occur in some execution

• This is the best solution
• … but it is undecidable

x = 1 x = 2

y = y+2

if (c)

if (c)

y = x+1

CS 412/413 Spring 2008 Introduction to Compilers 17

Dataflow Equations
• Solve equations: use an iterative algorithm

– Initialize in[Bs] = start value
– Initialize everything else to ⊤
– Repeatedly apply rules
– Stop when reach a fixed point

CS 412/413 Spring 2008 Introduction to Compilers 18

Kildall Algorithm (forward)

in[BS] = start value
out[B] = ⊤, for all B

repeat
for each basic block B ≠ Bs

in[B] = ⊓ {out[B’] | B’∈pred(B)}
for each basic block B

out[B] = FB(in[B])

until no change

CS 412/413 Spring 2008 Introduction to Compilers 19

Efficiency

• Algorithm is inefficient
– Effects of basic blocks re-evaluated even if the input

information has not changed

• Better: re-evaluate blocks only when necessary

• Use a worklist algorithm
– Keep of list of blocks to evaluate
– Initialize list to the set of all basic blocks
– If out[B] changes after evaluating out[B] = FB(in[B]),

then add all successors of B to the list

CS 412/413 Spring 2008 Introduction to Compilers 20

Worklist Algorithm (forward)
in[BS] = start value
out[B] = ⊤, for all B
worklist = set of all basic blocks B

repeat
remove a node B from the worklist
in[B] = ⊓ {out[B’] | B’ ∈ pred(B)}
out[B] = FB(in[B])
if out[B] has changed then

worklist = worklist ∪ succ(B)

until worklist = ∅

CS 412/413 Spring 2008 Introduction to Compilers 21

Correctness
• Initial algorithm is correct

– If dataflow information does not change in the last
iteration, then it satisfies the equations

• Worklist algorithm is correct
– Maintains the invariant that

in[B] = ⊓ {out[B’] | B’ ∈ pred(B)}

out[B] = FB(in[B])
for all the blocks B not in the worklist

– At the end, worklist is empty

CS 412/413 Spring 2008 Introduction to Compilers 22

Summary
• Dataflow analysis

– sets up system of equations
– iteratively computes MFP
– Terminates because transfer functions are monotonic

and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:

FP ⊑ MFP ⊑ MOP ⊑ IDEAL
• MFP = MOP if distributive transfer functions

• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP

	CS412/CS413
	Lattices
	Transfer Functions
	Control Flow
	Treatment as F:LnLn
	Monotonicity
	Monotonicity of Meet
	Fixed Points
	Chains in Lattices
	Iterative Computation of Solution
	Multiple Solutions
	Meet Over Paths Solution (forward)
	MFP versus MOP
	Distributivity
	Importance of Distributivity
	Better Than MOP?
	Dataflow Equations
	Kildall Algorithm (forward)
	Efficiency
	Worklist Algorithm (forward)
	Correctness
	Summary

