CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 27: More Dataflow Analysis 31 Mar 08

CS 412/413 Spring 2008

Lattices

- Lattice:
 - Set augmented with a partial order relation \sqsubseteq
 - Each subset has a LUB and a GLB
 - Can define: meet Π , join \sqcup , top \top , bottom \bot
- Use lattice to express information about a point in a program, where S1 ⊑ S2 means "S1 is less or equally precise as S2"
- To compute information: build constraints that describe how the lattice information changes
 - Effect of instructions: transfer functions
 - Effect of control flow: meet operation

CS 412/413 Spring 2008

Transfer Functions

- Let L = dataflow information lattice
- Transfer function $F_I : L \rightarrow L$ for each instruction I
 - Describes how I modifies the information in the lattice
 - If in[I] is info before I and out[I] is info after I, then Forward analysis: $out[I] = F_I(in[I])$ Backward analysis: $in[I] = F_I(out[I])$
- Transfer function $F_B : L \rightarrow L$ for each basic block B
 - Is composition of transfer functions of instructions in B
 - If in[B] is info before B and out[B] is info after B, then
 Forward analysis: $out[B] = F_B(in[B])$ Backward analysis: $in[B] = F_B(out[B])$

CS 412/413 Spring 2008

Control Flow

- Meet operation models how to combine information at split/join points in the control flow
 - If in[B] is info before B and out[B] is info after B, then:
 Forward analysis: in[B] = ⊓ {out[B'] | B'∈pred(B)}
 Backward analysis: out[B] = ⊓ {in[B'] | B'∈succ(B)}
- Can alternatively use join operation ⊔ (equivalent to using the meet operation ⊓ in the reversed lattice)

Treatment as $F:L^n \rightarrow L^n$

- For a data flow analysis problem
 - With lattice L
 - Basic blocks B₁, ..., B_n
 - Transfer functions F₁, ..., F_n
- Treat as
 - Iteration of function F: Lⁿ → Lⁿ ⊤, F(⊤), F(F(⊤), ...
 - Where F summarizes effect of one sweep for all blocks B in a given order of either

out[B] = ... and in[B] = F_B (out[B]) (for backward)

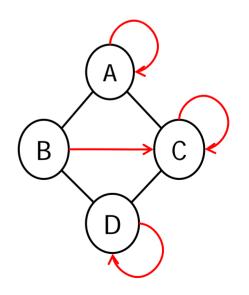
in[B] = ... and out[B]= $F_B(in[B])$ (for forward)

Monotonicity

- Function $F : L \to L$ is monotonic if $x \sqsubseteq y$ implies $F(x) \sqsubseteq F(y)$
- A monotonic function is "order preserving"
- Contrast with

For all x, $F(x) \sqsubseteq x$

• F is monotonic but $C = F(B) \not\subseteq B$



Monotonicity of Meet

• Meet operation is monotonic over L x L, i.e.,

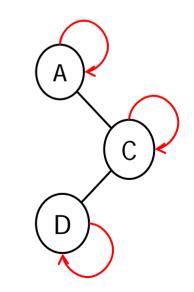
 $x_1 \sqsubseteq y_1 \text{ and } x_2 \sqsubseteq y_2 \text{ implies } (x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)$

- Proof:
 - any lower bound of $\{x_1, x_2\}$ is also a lower bound of $\{y_1, y_2\}$, because $x_1 \sqsubseteq y_1$ and $x_2 \sqsubseteq y_2$
 - $x_1 \sqcap x_2$ is a lower bound of $\{x_1, x_2\}$
 - So $x_1 \sqcap x_2$ is a lower bound of $\{y_1, y_2\}$
 - But $y_1 \sqcap y_2$ is the greatest lower bound of $\{y_1, y_2\}$
 - Hence $(x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)$

CS 412/413 Spring 2008

Fixed Points

- x in lattice L is a fixed point of function F iff x=F(x)
- Tarski-Knaster Fixed Point Theorem. The fixed points of a monotonic function on a complete lattice form a complete lattice. In particular, there is a maximal fixed point (MFP).



Chains in Lattices

- A chain in a lattice L is a totally ordered subset S of L:
 x ⊑ y or y ⊑ x for any x, y ∈ S
- In other words:

Elements in a totally ordered subset S can be indexed to form an ascending sequence:

 $\mathbf{X}_1 \sqsubseteq \mathbf{X}_2 \sqsubseteq \mathbf{X}_3 \sqsubseteq \dots$

or they can be indexed to form a descending sequence:

$$\mathbf{x}_1 \sqsupseteq \mathbf{x}_2 \sqsupseteq \mathbf{x}_3 \sqsupseteq \dots$$

- Height of a lattice = size of its largest chain
- Lattice with finite height: only has finite chains

Iterative Computation of Solution

- Let F be a monotonic function over lattice L
- $\top \sqsupseteq \mathsf{F}(\top) \sqsupseteq \mathsf{F}(\mathsf{F}(\top) \sqsupseteq \dots$ is a descending chain
- If L has finite height, the chain ends at the maximal fixed point of F (MFP)

Multiple Solutions

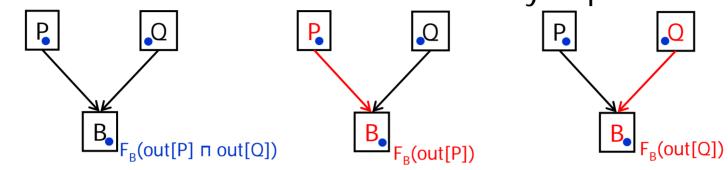
- Dataflow equations may have multiple solutions
- Example: live variables Equations: $11 = 12 - \{y\}$ $13 = (14 - \{x\}) \cup \{y\}$ $12 = 11 \cup 13$ $14 = \{x\}$ Solution 1: $11 = \{\}, 12 = \{y\}, 13 = \{y\}, 14 = \{x\}$ Solution 2: $11 = \{x\}, 12 = \{x, y\}, 13 = \{y\}, 14 = \{x\}$

For any solution FP of the dataflow equations $FP \sqsubseteq MFP$ FP is said to be a conservative or safe solution

CS 412/413 Spring 2008

Meet Over Paths Solution (forward)

• Is MFP the best solution to an analysis problem?



- Alternative to MFP: a different way to compute solution
 - Let G be the control flow graph with start block B₀
 - For each path $p_n = [B_0, B_1, ..., B_n]$ from B_0 to block B_n define $F[p_n] = F_{Bn-1} \circ F_{B1} \circ ... \circ F_{B0}$
 - Compute solution as

in[B_n] = Π { F[p_n](start value) | all paths p_n from B₀ to B_n}

This solution is the Meet Over Paths (MOP) solution for
 Compilers 12

MFP versus MOP

- Precision: MOP solution is at least as precise as MFP
 MFP ⊑ MOP
- Why not use MOP?
- MOP is intractable in practice

1. Exponential number of paths: for a program consisting of a sequence of N if statement, there will $2^{\rm N}$ paths in the control flow graph

2. Infinite number of paths: for loops in the CFG

Distributivity

- Function F : L \rightarrow L is distributive if F(x \sqcap y) = F(x) \sqcap F(y)
- Property: F is monotonic iff $F(x \sqcap y) \sqsubseteq F(x) \sqcap F(y)$
 - any distributive function is monotonic!

Importance of Distributivity

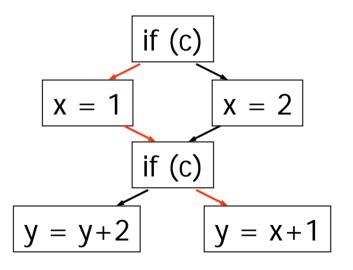
 Property: if transfer functions are distributive, then the solution to the dataflow equations is identical to the meet-over-paths solution

MFP = MOP

• For distributive transfer functions, can compute the intractable MOP solution using the iterative fixed-point algorithm

Better Than MOP?

- Is MOP the best solution to the analysis problem?
- MOP computes solution for all paths in the CFG
- There may be paths that will never occur in any execution
- So MOP is conservative
- IDEAL = solution that takes into account only paths that occur in some execution
- This is the best solution
- ... but it is undecidable



Dataflow Equations

- Solve equations: use an iterative algorithm
 - Initialize in $[B_s]$ = start value
 - Initialize everything else to $\ensuremath{^\top}$
 - Repeatedly apply rules
 - Stop when reach a fixed point

Kildall Algorithm (forward)

 $in[B_S] = start value$ out[B] = τ , for all B

repeat
for each basic block $B \neq B_s$ in[B] = Π {out[B'] | B' \in pred(B)}
for each basic block B
out[B] = F_B(in[B])
until no change

Efficiency

- Algorithm is inefficient
 - Effects of basic blocks re-evaluated even if the input information has not changed
- Better: re-evaluate blocks only when necessary
- Use a worklist algorithm
 - Keep of list of blocks to evaluate
 - Initialize list to the set of all basic blocks
 - If out[B] changes after evaluating out[B] = F_B(in[B]), then add all successors of B to the list

Worklist Algorithm (forward)

in[B_S] = start value out[B] = τ , for all B worklist = set of all basic blocks B

repeat

remove a node B from the worklist $in[B] = \Pi \{out[B'] | B' \in pred(B)\}$ $out[B] = F_B(in[B])$ **if** out[B] has changed **then** worklist = worklist U succ(B) **until** worklist = Ø

Correctness

- Initial algorithm is correct
 - If dataflow information does not change in the last iteration, then it satisfies the equations
- Worklist algorithm is correct

- Maintains the invariant that

 $in[B] = \Pi \{out[B'] \mid B' \in pred(B)\}$ $out[B] = F_B(in[B])$

for all the blocks B not in the worklist

- At the end, worklist is empty

Summary

- Dataflow analysis
 - sets up system of equations
 - iteratively computes MFP
 - Terminates because transfer functions are monotonic and lattice has finite height
- Other possible solutions: FP, MOP, IDEAL
- All are safe solutions, but some are more precise:
 FP ⊑ MFP ⊑ MOP ⊑ IDEAL
- MFP = MOP if distributive transfer functions
- MOP and IDEAL are intractable
- Compilers use dataflow analysis and MFP