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Lattices

• Lattice:
– Set augmented with a partial order relation ⊑
– Each subset has a LUB and a GLB
– Can define: meet ⊓, join ⊔, top ⊤, bottom ⊥

• Use lattice to express information about a point in a 
program, where  S1 ⊑ S2 means “S1 is less or equally 
precise as S2”

• To compute information: build constraints that 
describe how the lattice information changes
– Effect of instructions: transfer functions
– Effect of control flow: meet operation
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Transfer Functions

• Let L = dataflow information lattice

• Transfer function FI : L → L for each instruction I
– Describes how I modifies the information in the lattice
– If in[I] is info before I and out[I] is info after I, then

Forward analysis: out[I] = FI(in[I])
Backward analysis: in[I] = FI(out[I])

• Transfer function FB : L → L for each basic block B
– Is composition of transfer functions of instructions in B
– If in[B] is info before B and out[B] is info after B, then

Forward analysis: out[B] = FB(in[B])
Backward analysis: in[B] = FB(out[B])
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Control Flow
• Meet operation models how to combine information 

at split/join points in the control flow
– If in[B] is info before B and out[B] is info after B, then:

Forward analysis:   in[B] = ⊓ {out[B’] | B’∈pred(B)} 
Backward analysis: out[B] = ⊓ {in[B’] | B’∈succ(B)}

• Can alternatively use join operation ⊔ (equivalent to 
using the meet operation ⊓ in the reversed lattice)



Treatment as F:Ln→Ln

• For a data flow analysis problem
– With lattice L
– Basic blocks B1, …, Bn

– Transfer functions F1, …, Fn

• Treat as
– Iteration of function F: Ln → Ln

⊤, F(⊤), F(F(⊤), …
– Where F summarizes effect of one sweep for all 

blocks B in a given order of either
out[B] = … and   in[B]  =FB(out[B])  (for backward)
in[B]   = … and   out[B]=FB(in[B])    (for forward)
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• Function F : L → L is monotonic if
x ⊑ y  implies  F(x) ⊑ F(y)

• A monotonic function is “order preserving”
• Contrast with

For all x,  F(x) ⊑ x
• F is monotonic but C = F(B) ⋢ B

Monotonicity

CS 412/413   Spring 2008 Introduction to Compilers 6

A

D

CB



CS 412/413   Spring 2008 Introduction to Compilers 7

Monotonicity of Meet
• Meet operation is monotonic over L x L, i.e., 

x1 ⊑ y1 and x2 ⊑ y2 implies (x1 ⊓ x2) ⊑ (y1 ⊓ y2)

• Proof: 
– any lower bound of {x1,x2} is also a lower bound of 

{y1,y2}, because x1 ⊑ y1 and x2 ⊑ y2 

– x1 ⊓ x2 is a lower bound of {x1,x2}
– So x1 ⊓ x2 is a lower bound of {y1,y2}
– But y1 ⊓ y2 is the greatest lower bound of {y1,y2}
– Hence (x1 ⊓ x2) ⊑ (y1 ⊓ y2)



Fixed Points
• x in lattice L is a fixed point of function F iff x=F(x)
• Tarski-Knaster Fixed Point Theorem. The fixed points of 

a monotonic function on a complete lattice form a 
complete lattice. In particular, there is a maximal fixed 
point (MFP).
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Chains in Lattices
• A chain in a lattice L is a totally ordered subset S of L:

x ⊑ y or y ⊑ x for any x, y ∈ S

• In other words:
Elements in a totally ordered subset S can be indexed to 
form an ascending sequence:

x1 ⊑ x2 ⊑ x3 ⊑ …
or they can be indexed to form a descending sequence:

x1 ⊒ x2 ⊒ x3 ⊒ …

• Height of a lattice = size of its largest chain
• Lattice with finite height: only has finite chains



Iterative Computation of Solution
• Let F be a monotonic function over lattice L
• ⊤ ⊒ F(⊤) ⊒ F(F(⊤) ⊒ … is a descending chain
• If L has finite height, the chain ends at the 

maximal fixed point of F (MFP)
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• Dataflow equations may have multiple solutions

• Example: live variables
Equations: I1 = I2-{y}

I3 = (I4-{x}) U {y}
I2 = I1 U I3
I4 = {x}

Solution 1: I1={}, I2={y}, I3={y}, I4={x}

Solution 2: I1={x}, I2={x,y}, I3={y}, I4={x}

For any solution FP of the dataflow equations FP ⊑ MFP
FP is said to be a conservative or safe solution 

Multiple Solutions

x = y

y = 1 I1
I2
I3
I4



∙

FB(out[P] ⊓ out[Q]) FB(out[P]) FB(out[Q]) 
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• Is MFP the best solution to an analysis problem?

• Alternative to MFP: a different way to compute solution 
– Let G be the control flow graph with start block B0

– For each path pn=[B0, B1, …, Bn] from B0 to block Bn
define F[pn] = FBn-1 ° FB1 ° … ° FB0

– Compute solution as
in[Bn] = ⊓ { F[pn](start value) | all paths pn from B0 to 

Bn}
• This solution is the Meet Over Paths (MOP) solution for 

block Bn

Meet Over Paths Solution (forward)

P Q

B

P Q

B

P Q

B

∙ ∙ ∙ ∙ ∙

∙∙∙
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MFP versus MOP
• Precision: MOP solution is at least as precise as MFP

MFP ⊑ MOP

• Why not use MOP?
• MOP is intractable in practice

1. Exponential number of paths: for a program 
consisting of a sequence of N if statement, there will 2N

paths in the control flow graph
2. Infinite number of paths: for loops in the CFG
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Distributivity

• Function F : L → L is distributive if
F(x ⊓ y)  = F(x) ⊓ F(y)

• Property: F is monotonic iff F(x ⊓ y) ⊑ F(x) ⊓ F(y)
- any distributive function is monotonic!
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Importance of Distributivity

• Property: if transfer functions are distributive, then 
the solution to the dataflow equations is identical to 
the meet-over-paths solution

MFP = MOP

• For distributive transfer functions, can compute the 
intractable MOP solution using the iterative fixed-
point algorithm 
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Better Than MOP?
• Is MOP the best solution to the analysis problem?

• MOP computes solution for all paths in the CFG
• There may be paths that will 

never occur in any execution 
• So MOP is conservative

• IDEAL = solution that takes 
into account only paths that
occur in some execution

• This is the best solution
• … but it is undecidable

x = 1 x = 2

y = y+2

if (c)

if (c)

y = x+1
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Dataflow Equations
• Solve equations: use an iterative algorithm

– Initialize in[Bs]  = start value
– Initialize everything else to ⊤
– Repeatedly apply rules
– Stop when reach a fixed point
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Kildall Algorithm (forward)

in[BS] = start value
out[B] = ⊤, for all B

repeat
for each basic block B ≠ Bs

in[B] = ⊓ {out[B’] | B’∈pred(B)}
for each basic block B 

out[B] = FB(in[B])

until no change
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Efficiency

• Algorithm is inefficient
– Effects of basic blocks re-evaluated even if the input 

information has not changed

• Better: re-evaluate blocks only when necessary

• Use a worklist algorithm
– Keep of list of blocks to evaluate
– Initialize list to the set of all basic blocks
– If out[B] changes after evaluating out[B] = FB(in[B]), 

then add all successors of B to the list
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Worklist Algorithm (forward)
in[BS] = start value
out[B] = ⊤, for all B
worklist = set of all basic blocks B

repeat
remove a node B from the worklist
in[B] = ⊓ {out[B’] | B’ ∈ pred(B)}
out[B] = FB(in[B])
if out[B] has changed then

worklist = worklist ∪ succ(B)

until worklist = ∅
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Correctness
• Initial algorithm is correct

– If dataflow information does not change in the last 
iteration, then it satisfies the equations

• Worklist algorithm is correct
– Maintains the invariant that

in[B] = ⊓ {out[B’] | B’ ∈ pred(B)}

out[B] = FB(in[B])
for all the blocks B not in the worklist

– At the end, worklist is empty
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Summary
• Dataflow analysis 

– sets up system of equations
– iteratively computes MFP
– Terminates because transfer functions are monotonic 

and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:

FP ⊑ MFP ⊑ MOP ⊑ IDEAL
• MFP = MOP if distributive transfer functions

• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP
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