CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 26: Dataflow Analysis Frameworks 28 March 08

Live Variable Analysis

What are the live
variables at each program point?

Method:

1. Define sets of live variables
2. Build constraints
3. Solve constraints

Derive Constraints

Derive Constraints

$$
\begin{aligned}
& L_{1}=L_{2} \cup\{c\} \\
& L_{2}=L_{3} \cup L_{11} \\
& L_{3}=\left(L_{4}^{-}-\{x\}\right) \cup\{y\} \\
& L_{4}=\left(L_{5}^{-}-\{y\}\right) \cup\{z\} \\
& L_{5}=L_{6} \cup\{d\} \\
& L_{6}=L_{7} \cup L_{9} \\
& L_{7}=\left(L_{8}^{-}\{x\}\right) \cup\{y, z\} \\
& L_{8}=L_{9} \\
& L_{9}=L_{10^{-}}\{z\} \\
& L_{10}=L_{1} \\
& L_{11}=\left(L_{12}-\{z\}\right) \cup\{x\}
\end{aligned}
$$

Initialization

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{2} \cup\{\mathrm{c}\} \\
& \mathrm{L}_{2}=\mathrm{L}_{3} \cup \mathrm{~L}_{11} \\
& \mathrm{~L}_{3}=\left(\mathrm{L}_{4}-\{\mathrm{x}\}\right) \cup\{\mathrm{y}\} \\
& \mathrm{L}_{4}=\left(\mathrm{L}_{5}-\{\mathrm{y}\}\right) \cup\{\mathrm{z}\} \\
& \mathrm{L}_{5}=\mathrm{L}_{6} \cup\{\mathrm{~d}\} \\
& \mathrm{L}_{6}=\mathrm{L}_{7} \cup \mathrm{~L}_{9} \\
& \mathrm{~L}_{7}=\left(\mathrm{L}_{8}-\{\mathrm{x}\}\right) \cup\{\mathrm{y}, \mathrm{z}\} \\
& \mathrm{L}_{8}=\mathrm{L}_{9} \\
& \mathrm{~L}_{9}=\mathrm{L}_{10}-\{\mathrm{z}\} \\
& \mathrm{L}_{10}=\mathrm{L}_{1} \\
& \mathrm{~L}_{11}=\left(\mathrm{L}_{12}-\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}
\end{aligned}
$$

Iteration 1

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{2} \cup\{\mathrm{c}\} \\
& \mathrm{L}_{2}=\mathrm{L}_{3} \cup \mathrm{~L}_{11} \\
& \mathrm{~L}_{3}=\left(\mathrm{L}_{4}-\{\mathrm{x}\}\right) \cup\{\mathrm{y}\} \\
& \mathrm{L}_{4}=\left(\mathrm{L}_{5}-\{\mathrm{y}\}\right) \cup\{\mathrm{z}\} \\
& \mathrm{L}_{5}=\mathrm{L}_{6} \cup\{\mathrm{~d}\} \\
& \mathrm{L}_{6}=\mathrm{L}_{7} \cup \mathrm{~L}_{9} \\
& \mathrm{~L}_{7}=\left(\mathrm{L}_{8}-\{\mathrm{x}\}\right) \cup\{\mathrm{y}, \mathrm{z}\} \\
& \mathrm{L}_{8}=\mathrm{L}_{9} \\
& \mathrm{~L}_{9}=\mathrm{L}_{10}-\{\mathrm{z}\} \\
& \mathrm{L}_{10}=\mathrm{L}_{1} \\
& \mathrm{~L}_{11}=\left(\mathrm{L}_{12}-\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}
\end{aligned}
$$

Iteration 2

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{2} \cup\{\mathrm{c}\} \\
& \mathrm{L}_{2}=\mathrm{L}_{3} \cup \mathrm{~L}_{11} \\
& \mathrm{~L}_{3}=\left(\mathrm{L}_{4}-\{\mathrm{x}\}\right) \cup\{y\} \\
& L_{4}=\left(L_{5}-\{y\}\right) \cup\{z\} \\
& L_{5}=L_{6} \cup\{d\} \\
& \mathrm{L}_{6}=\mathrm{L}_{7} \cup \mathrm{~L}_{9} \\
& L_{7}=\left(L_{8}-\{x\}\right) \cup\{y, z\} \\
& \mathrm{L}_{8}=\mathrm{L}_{9} \\
& \mathrm{~L}_{9}=\mathrm{L}_{10}-\{\mathrm{z}\} \\
& \mathrm{L}_{10}=\mathrm{L}_{1} \\
& \mathrm{~L}_{11}=\left(\mathrm{L}_{12^{-}}\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}
\end{aligned}
$$

Fixed-point!

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{2} \cup\{\mathrm{c}\} \\
& \mathrm{L}_{2}=\mathrm{L}_{3} \cup \mathrm{~L}_{11} \\
& L_{3}=\left(L_{4}-\{x\}\right) \cup\{y\} \\
& L_{4}=\left(L_{5}-\{y\}\right) \cup\{z\} \\
& \mathrm{L}_{5}=\mathrm{L}_{6} \cup\{\mathrm{~d}\} \\
& \mathrm{L}_{6}=\mathrm{L}_{7} \cup \mathrm{~L}_{9} \\
& L_{7}=\left(L_{8}-\{x\}\right) \cup\{y, z\} \\
& \mathrm{L}_{8}=\mathrm{L}_{9} \\
& \mathrm{~L}_{9}=\mathrm{L}_{10}-\{\mathrm{z}\} \\
& \mathrm{L}_{10}=\mathrm{L}_{1} \\
& \mathrm{~L}_{11}=\left(\mathrm{L}_{12}-\{\mathrm{z}\}\right) \cup\{\mathrm{x}\}
\end{aligned}
$$

Final Result

Characterize All Executions

The analysis detects that there is an execution that uses the value $x=y+1$

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{3}=\{\mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{4}=\{\mathrm{x}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{5}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{6}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{7}=\{\mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{8}=\{\mathrm{x}, \mathrm{y}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{9}=\{\mathrm{x}, \mathrm{y}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{10}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{11}=\{\mathrm{x}\} \\
& \mathrm{L}_{12}=\{ \}
\end{aligned}
$$

Generalization

- Live variable analysis and detection of available copies are similar:
- Define some information that they need to compute
- Build constraints for the information
- Solve constraints iteratively:
- The information always "increases" during iteration
- Eventually, it reaches a fixed point.
- We would like a general framework
- Framework applicable to many other analyses
- Live variable/copy propagation $=$ instances of the framework

Dataflow Analysis Framework

- Dataflow analysis = a common framework for many compiler analyses
- Computes some information at each program point
- The computed information characterizes all possible executions of the program
- Basic methodology:
- Describe information about the program using an algebraic structure called a lattice
- Build constraints that show how instructions and control flow influence the information in terms of values in the lattice
- Iteratively solve constraints

Partial Order Relations

- Lattice definition builds on the concept of a partial order relation
- A partial order (P, 드) consists of:
- A set P
- A partial order relation \subseteq that is:

1. Reflexive x ㄷ
2. Anti-symmetric $x \sqsubseteq y, y \sqsubseteq x \Rightarrow x=y$
3. Transitive: $\quad x \sqsubseteq y, y \sqsubseteq z \Rightarrow x$ ㄷ z

- Called a "partial order" because not all elements are comparable, in contrast with a total order, in which
$\neg 4$. Total
x ㄷ y or $y \sqsubseteq x$

Example

- P is \{red, blue, yellow, purple, orange, green\}
- ᄃ

red $\subseteq \subseteq$ purple, red \subseteq orange, blue \subseteq purple,
yellow ㄷ orange, blue \subseteq green, blue \subseteq green, red \subseteq red, blue \subseteq blue, yellow ㄷ yellow, purple 〔 purple, orange \subseteq orange, green \subseteq green

Hasse Diagrams

- A graphical representation of a partial order, where
- x and y are on the same level when they are incomparable
$-x$ is below y when x ㄷ y and $\mathrm{x} \neq \mathrm{y}$
- x is below y and connected
 by a line when $x \sqsubseteq y, x \neq y$, and there is no z such that x 드, z 드, $x \neq z$, and $y \neq z$

Lower/Upper Bounds

- If (P, \subseteq) is a partial order and $S \subseteq P$, then:

1. $x \in P$ is a lower bound of S if $x \sqsubseteq y$, for all $y \in S$
2. $x \in P$ is an upper bound of S if $y \subseteq x$, for all $y \in S$

- There may be multiple lower and upper bounds of the same set S

Example, cont.


```
red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.
```

purple is upper bound for \{red, blue\} orange is upper bound for \{red, yellow\} green is upper bound for \{orange, green\} no upper bound for \{red, bule, yellow\} no upper bound for \{purple, orange\} no upper bound for \{orange, green\} no upper bound for \{purple, green\} etc.

Example, cont.


```
red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.
```

purple is upper bound for \{red, blue\} orange is upper bound for \{red, yellow\} green is upper bound for \{orange, green\} no upper bound for \{red, bule, yellow\} no upper bound for \{purple, orange\} no upper bound for \{orange, green\} no upper bound for \{purple, green\} etc.
red' is also a lower bound for \{purple, orange\}

LUB and GLB

- Define least upper bound (LUB) and greatest lower bound (GLB) as follows:
- If $(P, \subseteq \subseteq)$ is a partial order and $S \subseteq P$, then:

1. $x \in P$ is $G L B$ of S if:
a) x is a lower bound of S
b) $y \subseteq x$, for any lower bound y of S
2. $x \in P$ is a LUB of S if:
a) x is an upper bound of S
b) $x \sqsubseteq y$, for any upper bound y of S

- ... are GLB and LUB unique?

Example, cont.

red is GLB for \{purple, orange\}
blue is GLB for \{purple, green\}
yellow is GLB for \{orange, green\}
purple is LUB for $\{$ red, blue\} orange is LUB for \{red, yellow\} green is LUB for \{orange, green\}

Example'

blue is GLB for \{purple, green\} yellow is GLB for \{orange, green\}
red' is a lower bound for \{purple, orange\} red is a lower bound for \{purple, orange\} There is no GLB for \{purple, orange\}
purple is LUB for \{red, blue\} orange is LUB for $\{r e d$, yellow\} green is LUB for \{orange, green\} purple is LUB for \{red', blue\} orange is LUB for \{red', yellow\}

Lattices

- A pair $(\mathrm{L}$, ㄷ) is a lattice if:

1. ($L, ㄷ$) is a partial order
2. Any finite non-empty subset $S \subseteq L$ has a LUB and a GLB

Example"

- L is natural numbers $\{0,1,2,3, \ldots\}$
- 드 is \leq

Every finite subset of L has a LUB
Every subset of L has a GLB
Therefore (L, \leq) is a lattice
No infinite subset of L has a LUB

Complete Lattices

- A pair ($L, ㄷ$) is a complete lattice if:

1. (L, 드) is a partial order
2. Any non-empty subset $S \subseteq L$ has a LUB and a GLB

- Can identify and name two special elements:

1. Bottom element: $\quad \perp=G L B(L)$
2. Top element: $\quad T=\operatorname{LUB}(L)$

- All finite lattices are complete

Example"'

- L is natural numbers $\{0,1,2,3, \ldots\}$
- ㄷ is \leq

Example"'"

black is GLB for $\{r e d$, blue, yellow $\}$
white is LUB for \{purple, orange, green\}

Meet and Join

- By definition, for any lattice L, GLBs and LUBs are defined for finite sets
- Define operators meet (п) and join (ப) as
$-x \sqcap y=\operatorname{GLB}(\{x, y\})$
$-x \sqcup y=\operatorname{LUB}(\{x, y\})$
- For any finite set $S \subseteq L$
- $п \mathrm{~S}=\mathrm{GLB}(\mathrm{S})$
- $u S=$ LUB(S)

Example"י"' Lattice

- Consider $S=\{a, b, c\}$ and its power set $P=$ $\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}\{a, b, c\}\}$
- Define partial order as set inclusion: $X \subseteq Y$
- Reflexive $X \subseteq X$
- Anti-symmetric $X \subseteq Y, Y \subseteq X \Rightarrow X=Y$
- Transitive $X \subseteq Y, Y \subseteq Z \Rightarrow X \subseteq Z$
- Also, for any two elements of P, there is a set that includes both and another set that is included in both
- Therefore (P, \subseteq) is a (complete) lattice

Power Set Lattice

- Partial order: \subseteq
(set inclusion)
- Meet: \cap
(set intersection)
- J oin: U
(set union)
- Top element: \{a,b,c\} (whole set)
- Bottom element: \varnothing

(empty set)

Reversed Lattice

- Partial order: \supseteq
(set inclusion)
- Meet: U
(set union)
- J oin: \cap
(set intersection)
- Top element: \varnothing
(empty set)
- Bottom element: $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
 (whole set)

Relation To Dataflow Analysis

- Information computed by live variable analysis and available copies can be expressed as elements of lattices
- Live variables: if V is the set of all variables in the program and P the power set of V, then:
- (P, \subseteq) is a lattice
- sets of live variables are elements of this lattice

Relation To Dataflow Analysis

- Copy Propagation:
- V is the set of all variables in the program
- $\mathrm{V} \times \mathrm{V}$ the Cartesian product representing all possible copy instructions
- P the power set of $V \times V$
- Then:
- (P, \subseteq) is a lattice
- sets of available copies are lattice elements

Using Lattices

- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to:
- Determine how each instruction in the program changes the information
- Determine how information changes at join/split points in the control flow

Transfer Functions

- Dataflow analysis defines a transfer function $F: L \rightarrow L$ for each instruction in the program
- Describes how the instruction modifies the information
- Consider in[I] is information before I, and out[I] is information after I
- Forward analysis:
- Backward analysis:
in[I] $=\mathrm{F}($ out $[\mathrm{I}])$

Basic Blocks

- Can extend the concept of transfer function to basic blocks using function composition
- Consider:
- Basic block B consists of instructions (I_{1}, \ldots, I_{n}) with transfer functions F_{1}, \ldots, F_{n}
- in[B] is information before B
- out[B] is information after B
- Forward analysis:

$$
\operatorname{out}[B]=F_{n}\left(\ldots\left(F_{1}(\operatorname{in}[B])\right)\right)=F_{n}{ }^{\circ} \ldots{ }^{\circ} F_{1}(\operatorname{in}[B])
$$

- Backward analysis:

$$
\operatorname{in}[I]=F_{1}\left(\ldots\left(F_{n}(\text { out }[i])\right)\right)=F_{1}{ }^{\circ} \ldots{ }^{\circ} F_{n}(\text { out }[B])
$$

Split/J oin Points

- Dataflow analysis uses meet/join operations at split/join points in the control flow
- Consider in[B$]$ is lattice information at beginning of block B and out[B] is lattice information at end of B
- Forward analysis: $\operatorname{in}[B]=\Pi$ \{out[$\left.\left.B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\}$
- Backward analysis: out[B] $=\Pi\left\{\operatorname{in}\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{succ}(B)\right\}$
- Can alternatively use join operation $ப$ (equivalent to using the meet operation Π in the reversed lattice)

Cartesian Products

- Let L_{1}, \ldots, L_{n} be sets
- Cartesian product of $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}$ is

$$
\left\{<x_{1}, \ldots, x_{n}>\mid x_{i} \in L_{i}\right\}
$$

- If $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}$ are (complete) lattices then their Cartesian product is a (complete) lattice, where \subseteq is defined by

$$
\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle \sqsubseteq\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle \text { iff for all } \mathrm{i}, \mathrm{x}_{\mathrm{i}} \subseteq \mathrm{y}_{\mathrm{i}}
$$

Information as Cartesian Product

- Consider a program analysis in which n program analysis variables range over lattice L
- We view the analysis as computing an n-tuple of Lvalues, i.e., a point in the n-ary Cartesian product of L
- Each change of one program analysis variable changes one component of the n-tuple
- Analysese will terminate because we will only consider
- Lattices with no infinite descending chains
- "Monotonic" transfer functions that move us down (or not at all) in the lattice

More About Lattices

- In a lattice (L, 드), the following are equivalent:

1. x ㄷ
2. $x \sqcap y=x$
3. $x \sqcup y=y$

- Note: meet and join operations were defined using the partial order relation

Proof (1 \& 2)

- Prove that x ㄷ y implies $x \sqcap y=x$:
$-x$ is a lower bound of $\{x, y\}$
- All lower bounds of $\{x, y\}$ are less= than x, y
- In particular, they are less= than x
- Prove that $x \sqcap y=x$ implies x ㄷ y :
$-x$ is a lower bound of $\{x, y\}$
$-x$ is less $=$ than x and y
- In particular, x is less= than y

Properties of Meet and Join

- The meet and join operators are:

1. Associative
2. Commutative
3. I dempotent:
($x \sqcap y) \sqcap z=x \sqcap(y \sqcap z)$
$x \sqcap y=y \sqcap x$
$x \square x=x$

- Property: If " Π " is an associative, commutative, and idempotent operator, then the relation "ㄷ" defined as x ■ iff $x \sqcap y=x$ is a partial order
- Above property provides an alternative definition of a partial orders and lattices starting from the meet (join) operator

