
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 26: Dataflow Analysis Frameworks
28 March 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Live Variable Analysis

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

What are the live
variables at each
program point?

Method:
1. Define sets of

live variables
1. Build constraints
2. Solve constraints

CS 412/413 Spring 2008 Introduction to Compilers 3

Derive Constraints

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

Constraints for each
instruction:

in[I]=(out[I]-def[I])

∪ use[I]

Constraints for
control flow:

out[B] = ∪ in[B’]
B’∈ succ(B)

CS 412/413 Spring 2008 Introduction to Compilers 4

Derive Constraints

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11

CS 412/413 Spring 2008 Introduction to Compilers 5

Initialization

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={}

L2 ={}
L3 ={}
L4 ={}

L5 ={}

L9 ={}

L10 ={}

L11 ={}

L12 ={}

L7 ={}

L8 ={}

L6 ={}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11

CS 412/413 Spring 2008 Introduction to Compilers 6

Iteration 1

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,d}
L3 ={y,z,d}
L4 ={z,d}

L5 ={y,z,d}

L9 ={}

L10 ={}

L11 ={x}

L12 ={}

L7 ={y,z}

L8 ={}

L6 ={y,z}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11

CS 412/413 Spring 2008 Introduction to Compilers 7

Iteration 2

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11

CS 412/413 Spring 2008 Introduction to Compilers 8

Fixed-point!

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11

CS 412/413 Spring 2008 Introduction to Compilers 9

Final Result

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

x live here !

Final result: sets
of live variables at
each program point

CS 412/413 Spring 2008 Introduction to Compilers 10

Characterize All Executions

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

The analysis detects
that there is an
execution that uses
the value x = y+1

CS 412/413 Spring 2008 Introduction to Compilers 11

Generalization
• Live variable analysis and detection of available

copies are similar:
– Define some information that they need to compute
– Build constraints for the information
– Solve constraints iteratively:

• The information always “increases” during iteration
• Eventually, it reaches a fixed point.

• We would like a general framework
– Framework applicable to many other analyses
– Live variable/copy propagation = instances of the

framework

CS 412/413 Spring 2008 Introduction to Compilers 12

Dataflow Analysis Framework
• Dataflow analysis = a common framework for

many compiler analyses
– Computes some information at each program point
– The computed information characterizes all possible

executions of the program

• Basic methodology:
– Describe information about the program using an

algebraic structure called a lattice
– Build constraints that show how instructions and

control flow influence the information in terms of
values in the lattice

– Iteratively solve constraints

CS 412/413 Spring 2008 Introduction to Compilers 13

Partial Order Relations

• Lattice definition builds on the concept of a
partial order relation

• A partial order (P,⊑) consists of:
– A set P
– A partial order relation ⊑ that is:

1. Reflexive x ⊑ x
2. Anti-symmetric x ⊑ y, y ⊑ x ⇒ x = y
3. Transitive: x ⊑ y, y ⊑ z ⇒ x ⊑ z

• Called a “partial order” because not all elements are
comparable, in contrast with a total order, in which

¬4. Total x ⊑ y or y ⊑ x

CS 412/413 Spring 2008 Introduction to Compilers 14

Example
• P is {red, blue, yellow, purple, orange, green}
• ⊑

red ⊑ purple, red ⊑ orange,
blue ⊑ purple, blue ⊑ green,
yellow ⊑ orange, blue ⊑ green,
red ⊑ red,
blue ⊑ blue,
yellow ⊑ yellow,
purple ⊑ purple,
orange ⊑ orange,
green ⊑ green

CS 412/413 Spring 2008 Introduction to Compilers 15

Hasse Diagrams
• A graphical representation

of a partial order, where
– x and y are on the same

level when they are
incomparable

– x is below y when x⊑y and
x≠y

– x is below y and connected
by a line when x⊑y, x≠y,
and there is no z such that
x⊑z, z⊑y, x≠z, and y≠z

red blue yellow

purple orange green

CS 412/413 Spring 2008 Introduction to Compilers 16

Lower/Upper Bounds

• If (P, ⊑) is a partial order and S ⊆ P, then:
1. x∈P is a lower bound of S if x ⊑ y, for all y∈S
2. x∈P is an upper bound of S if y ⊑ x, for all y∈S

• There may be multiple lower and upper bounds
of the same set S

CS 412/413 Spring 2008 Introduction to Compilers 17

Example, cont.

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.

red blue yellow

purple orange green

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}
no upper bound for {purple, orange}
no upper bound for {orange, green}
no upper bound for {purple, green}
etc.

CS 412/413 Spring 2008 Introduction to Compilers 18

Example, cont.

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}
no upper bound for {purple, orange}
no upper bound for {orange, green}
no upper bound for {purple, green}
etc.

red blue yellow

purple orange green

red’

red’ is also a lower bound for {purple, orange}

CS 412/413 Spring 2008 Introduction to Compilers 19

LUB and GLB
• Define least upper bound (LUB) and greatest lower

bound (GLB) as follows:

• If (P, ⊑) is a partial order and S ⊆ P, then:
1. x∈P is GLB of S if:

a) x is a lower bound of S
b) y ⊑ x, for any lower bound y of S

2. x∈P is a LUB of S if:
a) x is an upper bound of S
b) x ⊑ y, for any upper bound y of S

• … are GLB and LUB unique?

CS 412/413 Spring 2008 Introduction to Compilers 20

Example, cont.

red is GLB for {purple, orange}
blue is GLB for {purple, green}
yellow is GLB for {orange, green}

red blue yellow

purple orange green

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

CS 412/413 Spring 2008 Introduction to Compilers 21

Example’

blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}
purple is LUB for {red’, blue}
orange is LUB for {red’, yellow}

red blue yellow

purple orange green

red’

red’ is a lower bound for {purple, orange}
red is a lower bound for {purple, orange}
There is no GLB for {purple, orange}

CS 412/413 Spring 2008 Introduction to Compilers 22

Lattices

• A pair (L, ⊑) is a lattice if:
1. (L, ⊑) is a partial order
2. Any finite non-empty subset S ⊆ L has a LUB and a
GLB

CS 412/413 Spring 2008 Introduction to Compilers 23

Example”
• L is natural numbers {0, 1, 2, 3, … }
• ⊑ is ≤

0

3

2

1

Every finite subset of L has a LUB
Every subset of L has a GLB
Therefore (L, ≤) is a lattice
No infinite subset of L has a LUB

...

CS 412/413 Spring 2008 Introduction to Compilers 24

Complete Lattices

• A pair (L, ⊑) is a complete lattice if:
1. (L, ⊑) is a partial order
2. Any non-empty subset S ⊆ L has a LUB and a GLB

• Can identify and name two special elements:
1. Bottom element: ⊥ = GLB(L)
2. Top element: ⊤ = LUB(L)

• All finite lattices are complete

CS 412/413 Spring 2008 Introduction to Compilers 25

Example”’
• L is natural numbers {0, 1, 2, 3, … }
• ⊑ is ≤

0

3

2

1

Every finite subset of L has a GLB and LUB
Therefore (L, ≤) is a lattice
Every infinite subset of L has a LUB
Therefore (L, ≤) is a complete lattice
However, L has infinite ascending chains

...

⊤

CS 412/413 Spring 2008 Introduction to Compilers 26

Example’’’’

black is GLB for {red, blue, yellow} white is LUB for {purple, orange, green}

red blue yellow

purple orange green

black

white

CS 412/413 Spring 2008 Introduction to Compilers 27

Meet and Join

• By definition, for any lattice L, GLBs and LUBs
are defined for finite sets

• Define operators meet (⊓) and join (⊔) as
– x ⊓ y = GLB({x,y})
– x ⊔ y = LUB({x,y})
– For any finite set S ⊆ L

• ⊓S = GLB(S)
• ⊔S = LUB(S)

red blue yellow

purple orange green

black

white

CS 412/413 Spring 2008 Introduction to Compilers 28

Example’’’’’ Lattice
• Consider S = {a,b,c} and its power set P =

{∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}

• Define partial order as set inclusion: X ⊆ Y
– Reflexive X ⊆ X
– Anti-symmetric X ⊆ Y, Y ⊆ X ⇒ X = Y
– Transitive X ⊆ Y, Y ⊆ Z ⇒ X ⊆ Z

• Also, for any two elements of P, there is a set
that includes both and another set that is
included in both

• Therefore (P, ⊆) is a (complete) lattice

CS 412/413 Spring 2008 Introduction to Compilers 29

Power Set Lattice
• Partial order: ⊆

(set inclusion)

• Meet: ∩
(set intersection)

• Join: ∪
(set union)

• Top element: {a,b,c}
(whole set)

• Bottom element: ∅
(empty set)

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅

CS 412/413 Spring 2008 Introduction to Compilers 30

Reversed Lattice
• Partial order: ⊇

(set inclusion)

• Meet: ∪
(set union)

• Join: ∩
(set intersection)

• Top element: ∅
(empty set)

• Bottom element: {a,b,c}
(whole set)

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

{a,b,c}

CS 412/413 Spring 2008 Introduction to Compilers 31

Relation To Dataflow Analysis

• Information computed by live variable analysis
and available copies can be expressed as
elements of lattices

• Live variables: if V is the set of all variables in
the program and P the power set of V, then:
– (P, ⊆) is a lattice
– sets of live variables are elements of this

lattice

CS 412/413 Spring 2008 Introduction to Compilers 32

Relation To Dataflow Analysis

• Copy Propagation:
- V is the set of all variables in the program
- V x V the Cartesian product representing all
possible copy instructions
- P the power set of V x V

• Then:
– (P, ⊆) is a lattice
– sets of available copies are lattice elements

CS 412/413 Spring 2008 Introduction to Compilers 33

Using Lattices

• Assume information we want to compute in a
program is expressed using a lattice L

• To compute the information at each program
point we need to:
– Determine how each instruction in the program

changes the information
– Determine how information changes at join/split

points in the control flow

CS 412/413 Spring 2008 Introduction to Compilers 34

Transfer Functions

• Dataflow analysis defines a transfer function
F : L → L for each instruction in the program

• Describes how the instruction modifies the
information

• Consider in[I] is information before I, and out[I] is
information after I

• Forward analysis: out[I] = F(in[I])
• Backward analysis: in[I] = F(out[I])

CS 412/413 Spring 2008 Introduction to Compilers 35

Basic Blocks
• Can extend the concept of transfer function

to basic blocks using function composition

• Consider:
– Basic block B consists of instructions (I1, …, In) with

transfer functions F1, …, Fn
– in[B] is information before B
– out[B] is information after B

• Forward analysis:
out[B] = Fn(…(F1(in[B]))) = Fn °... ° F1(in[B])

• Backward analysis:
in[I] = F1(… (Fn(out[i]))) = F1 °... ° Fn(out[B])

CS 412/413 Spring 2008 Introduction to Compilers 36

Split/Join Points
• Dataflow analysis uses meet/join operations at split/join

points in the control flow

• Consider in[B] is lattice information at beginning of
block B and out[B] is lattice information at end of B

• Forward analysis: in[B] = ⊓ {out[B’] | B’∈pred(B)}

• Backward analysis: out[B] = ⊓ {in[B’] | B’∈succ(B)}

• Can alternatively use join operation ⊔ (equivalent to
using the meet operation ⊓ in the reversed lattice)

Cartesian Products
• Let L1, …, Ln be sets

• Cartesian product of L1,…,Ln is
{ <x1,…,xn> | xi ∈ Li}

• If L1, …, Ln are (complete) lattices then their Cartesian
product is a (complete) lattice, where ⊑ is defined by
<x1,…,xn> ⊑ <y1,…,yn> iff for all i, xi ⊑ yi

CS 412/413 Spring 2008 Introduction to Compilers 37

Information as Cartesian Product
• Consider a program analysis in which n program

analysis variables range over lattice L
• We view the analysis as computing an n-tuple of L-

values, i.e., a point in the n-ary Cartesian product of L
• Each change of one program analysis variable changes

one component of the n-tuple
• Analysese will terminate because we will only consider

– Lattices with no infinite descending chains
– “Monotonic” transfer functions that move us down (or not at

all) in the lattice

CS 412/413 Spring 2008 Introduction to Compilers 38

CS 412/413 Spring 2008 Introduction to Compilers 39

More About Lattices

• In a lattice (L, ⊑), the following are equivalent:
1. x ⊑ y
2. x ⊓ y = x
3. x ⊔ y = y

• Note: meet and join operations were defined
using the partial order relation

CS 412/413 Spring 2008 Introduction to Compilers 40

Proof (1 & 2)
• Prove that x ⊑ y implies x ⊓ y = x:

– x is a lower bound of {x,y}
– All lower bounds of {x,y} are less= than x,y
– In particular, they are less= than x

• Prove that x ⊓ y = x implies x ⊑ y :
– x is a lower bound of {x,y}
– x is less= than x and y
– In particular, x is less= than y

CS 412/413 Spring 2008 Introduction to Compilers 41

Properties of Meet and Join
• The meet and join operators are:

1. Associative (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z)
2. Commutative x ⊓ y = y ⊓ x
3. Idempotent: x ⊓ x = x

• Property: If “⊓” is an associative, commutative, and
idempotent operator, then the relation “⊑” defined as
x⊑y iff x ⊓ y = x is a partial order

• Above property provides an alternative definition of a
partial orders and lattices starting from the meet (join)
operator

	CS412/CS413
	Live Variable Analysis
	Derive Constraints
	Derive Constraints
	Initialization
	Iteration 1
	Iteration 2
	Fixed-point!
	Final Result
	Characterize All Executions
	Generalization
	Dataflow Analysis Framework
	Partial Order Relations
	Example
	Hasse Diagrams
	Lower/Upper Bounds
	Example, cont.
	Example, cont.
	LUB and GLB
	Example, cont.
	Example’
	Lattices
	Example”
	Complete Lattices
	Example”’
	Example’’’’
	Meet and Join
	Example’’’’’ Lattice
	Power Set Lattice
	Reversed Lattice
	Relation To Dataflow Analysis
	Relation To Dataflow Analysis
	Using Lattices
	Transfer Functions
	Basic Blocks
	Split/Join Points
	Cartesian Products
	Information as Cartesian Product
	More About Lattices
	Proof (1 & 2)
	Properties of Meet and Join

