CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 26: Dataflow Analysis Frameworks 28 March 08

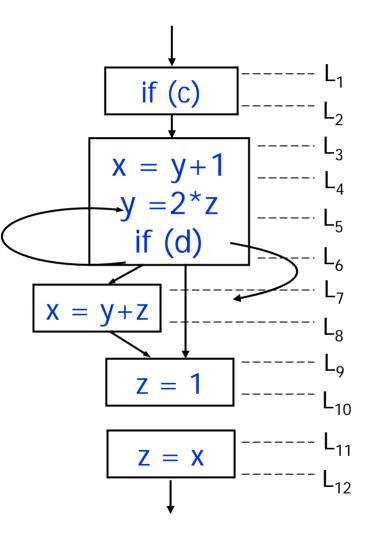
CS 412/413 Spring 2008

Live Variable Analysis

What are the live variables at each program point?

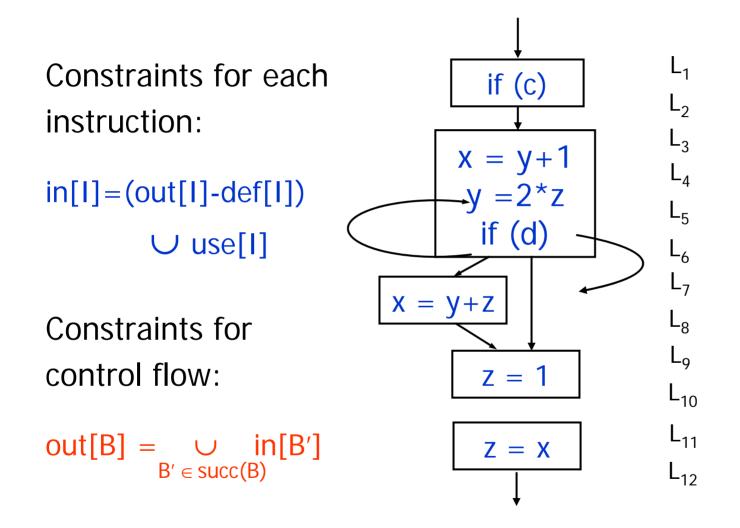
Method:

- 1. Define sets of live variables
- 1. Build constraints
- 2. Solve constraints



CS 412/413 Spring 2008

Derive Constraints



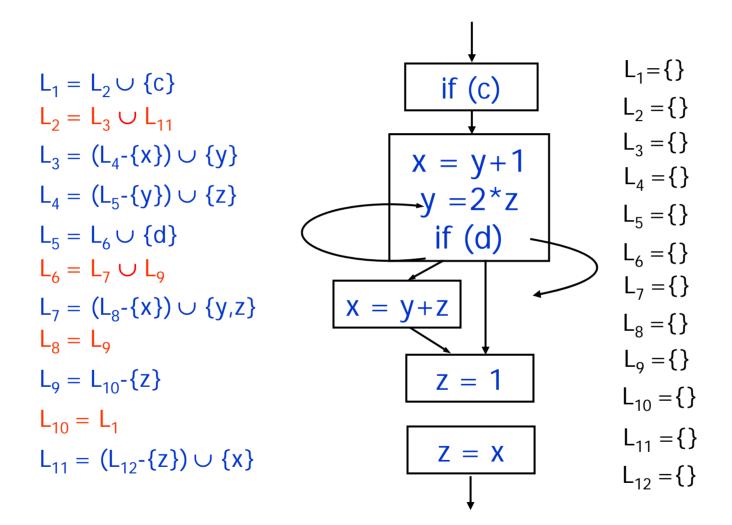
CS 412/413 Spring 2008

Derive Constraints

 L_1 $L_1 = L_2 \cup \{c\}$ if (c) L_2 $L_2 = L_3 \cup L_{11}$ L_3 $L_3 = (L_4 - \{x\}) \cup \{y\}$ x = y + 1 L_4 $L_4 = (L_5 - \{y\}) \cup \{z\}$ $-y = 2^{*}z$ L_5 $L_5 = L_6 \cup \{d\}$ if (d) L_6 $L_6 = L_7 \cup L_9$ L_7 $L_7 = (L_8 - \{x\}) \cup \{y, z\}$ X = Y + Z L_8 $L_8 = L_9$ L₉ $L_9 = L_{10} - \{z\}$ z = 1 L_{10} $L_{10} = L_1$ L_{11} Z = X $L_{11} = (L_{12} - \{z\}) \cup \{x\}$ L₁₂

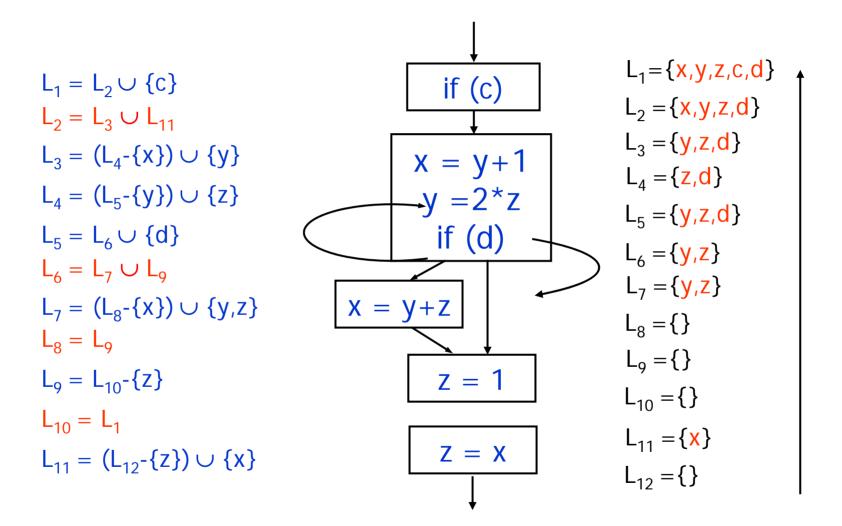
CS 412/413 Spring 2008

Initialization



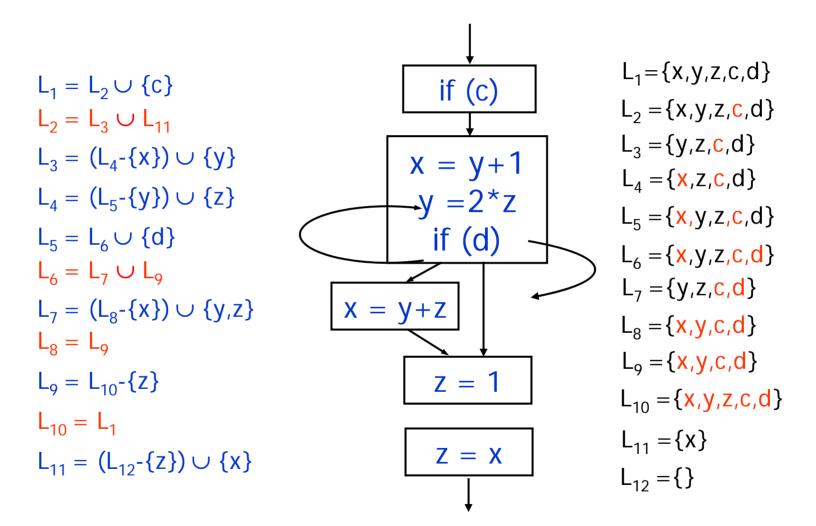
CS 412/413 Spring 2008

Iteration 1



CS 412/413 Spring 2008

Iteration 2



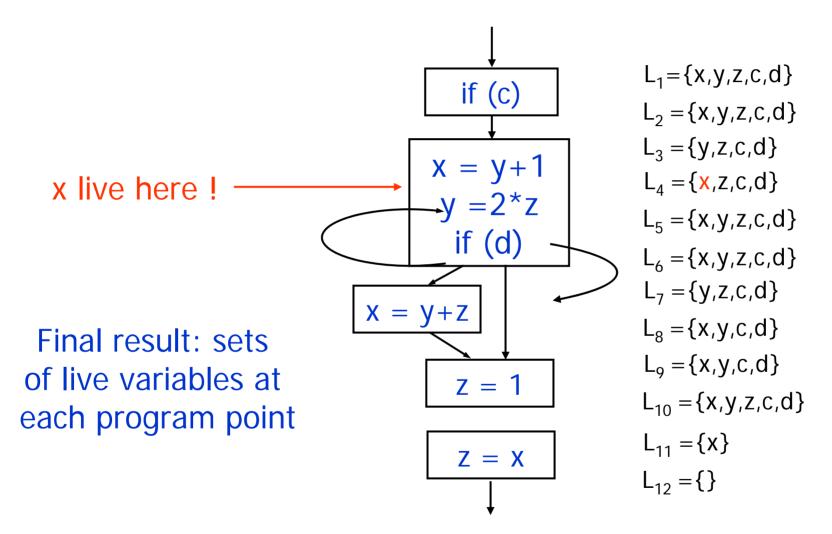
CS 412/413 Spring 2008

Fixed-point!

 $L_1 = \{x, y, z, c, d\}$ $L_1 = L_2 \cup \{c\}$ if (c) $L_2 = \{x, y, z, c, d\}$ $L_2 = L_3 \cup L_{11}$ $L_3 = \{y, z, c, d\}$ $L_3 = (L_4 - \{x\}) \cup \{y\}$ X = Y + 1 $L_4 = \{x, z, c, d\}$ $L_4 = (L_5 - \{y\}) \cup \{z\}$ $-y = 2^{*}z$ $L_5 = \{x, y, z, c, d\}$ $L_5 = L_6 \cup \{d\}$ if (d) $L_6 = \{x, y, z, c, d\}$ $L_6 = L_7 \cup L_9$ $L_7 = \{y, z, c, d\}$ $L_7 = (L_8 - \{x\}) \cup \{y, z\}$ X = Y + Z $L_8 = \{x, y, c, d\}$ $L_{g} = L_{o}$ $L_{q} = \{x, y, c, d\}$ $L_9 = L_{10} - \{z\}$ z = 1 $L_{10} = \{x, y, z, c, d\}$ $L_{10} = L_1$ $L_{11} = \{x\}$ Z = X $L_{11} = (L_{12} - \{z\}) \cup \{x\}$ $L_{12} = \{\}$

CS 412/413 Spring 2008

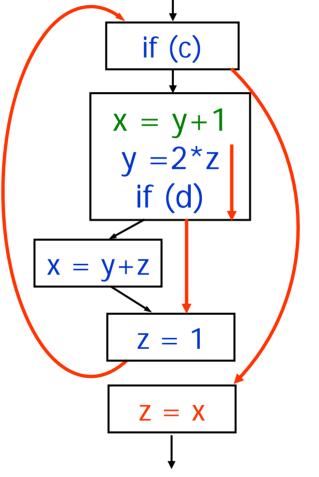
Final Result

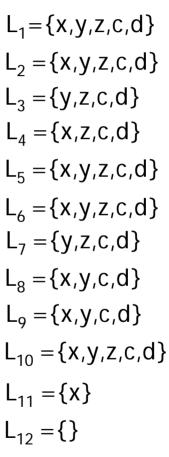


CS 412/413 Spring 2008

Characterize All Executions

The analysis detects that there is an execution that uses the value x = y+1





CS 412/413 Spring 2008

Generalization

- Live variable analysis and detection of available copies are similar:
 - Define some information that they need to compute
 - Build constraints for the information
 - Solve constraints iteratively:
 - The information always "increases" during iteration
 - Eventually, it reaches a fixed point.
- We would like a general framework
 - Framework applicable to many other analyses
 - Live variable/copy propagation = instances of the framework

Dataflow Analysis Framework

- Dataflow analysis = a common framework for many compiler analyses
 - Computes some information at each program point
 - The computed information characterizes all possible executions of the program
- Basic methodology:
 - Describe information about the program using an algebraic structure called a lattice
 - Build constraints that show how instructions and control flow influence the information in terms of values in the lattice
 - Iteratively solve constraints

Partial Order Relations

- Lattice definition builds on the concept of a partial order relation
- A partial order (P,⊑) consists of:
 - A set P
 - A partial order relation \sqsubseteq that is:
 - 1. Reflexive $x \sqsubseteq x$
 - 2. Anti-symmetric $x \sqsubseteq y, y \sqsubseteq x \Rightarrow x = y$
 - 3. Transitive: $x \sqsubseteq y, y \sqsubseteq z \implies x \sqsubseteq z$
- Called a "*partial* order" because not all elements are comparable, in contrast with a *total* order, in which ¬4. Total x ⊑ y or y ⊑ x

CS 412/413 Spring 2008

Example

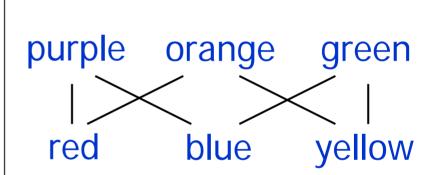
• P is {red, blue, yellow, purple, orange, green}

• ⊑

red \sqsubseteq purple, red \sqsubseteq orange, blue \sqsubseteq purple, blue \sqsubseteq green, yellow \sqsubseteq orange, blue \sqsubseteq green, $red \sqsubseteq red$, blue \sqsubseteq blue, yellow \sqsubseteq yellow, purple \sqsubseteq purple, orange ⊑ orange, green ⊑ green

Hasse Diagrams

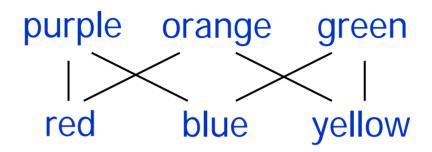
- A graphical representation of a partial order, where
 - x and y are on the same level when they are incomparable
 - x is below y when x⊑y and x≠y
 - x is below y and connected by a line when x⊑y, x≠y, and there is no z such that x⊑z, z⊑y, x≠z, and y≠z



Lower/Upper Bounds

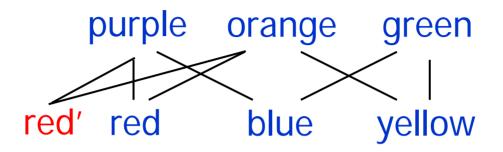
- If (P, ⊑) is a partial order and S ⊆ P, then:
 1. x∈P is a lower bound of S if x ⊑ y, for all y∈S
 2. x∈P is an upper bound of S if y ⊑ x, for all y∈S
- There may be multiple lower and upper bounds of the same set S

Example, cont.



red is lower bound for {purple, orange} blue is lower bound for {purple, green} yellow is lower bound for {orange, green} no lower bound for {purple, orange, green} no lower bound for {red, blue} no lower bound for {red, yellow} no lower bound for {blue, yellow}, etc. purple is upper bound for {red, blue} orange is upper bound for {red, yellow} green is upper bound for {orange, green} no upper bound for {red, bule, yellow} no upper bound for {purple, orange} no upper bound for {orange, green} no upper bound for {purple, green} etc.

Example, cont.



red is lower bound for {purple, orange} blue is lower bound for {purple, green} yellow is lower bound for {orange, green} no lower bound for {purple, orange, green} no lower bound for {red, blue} no lower bound for {red, yellow} no lower bound for {blue, yellow}, etc. purple is upper bound for {red, blue} orange is upper bound for {red, yellow} green is upper bound for {orange, green} no upper bound for {red, bule, yellow} no upper bound for {purple, orange} no upper bound for {orange, green} no upper bound for {purple, green} etc.

red' is also a lower bound for {purple, orange}

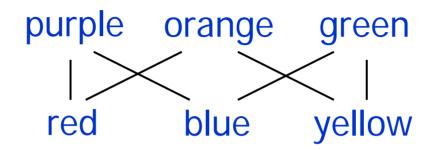
LUB and GLB

- Define least upper bound (LUB) and greatest lower bound (GLB) as follows:
- If (P, ⊑) is a partial order and S ⊆ P, then:
 1. x∈P is GLB of S if:
 - a) x is a lower bound of S
 - b) $y \sqsubseteq x$, for any lower bound y of S

2. $x \in P$ is a LUB of S if:

- a) x is an upper bound of S
- b) $x \sqsubseteq y$, for any upper bound y of S
- ... are GLB and LUB unique?

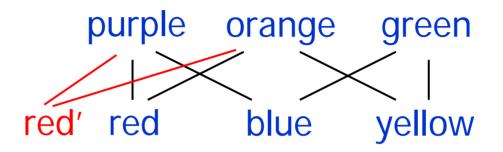
Example, cont.



red is GLB for {purple, orange}
blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

Example'



blue is GLB for {purple, green}
yellow is GLB for {orange, green}

red' is a lower bound for {purple, orange}
red is a lower bound for {purple, orange}
There is no GLB for {purple, orange}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}
purple is LUB for {red', blue}
orange is LUB for {red', yellow}

Lattices

A pair (L, ⊑) is a lattice if:
1. (L, ⊑) is a partial order
2. Any finite non-empty subset S ⊆ L has a LUB and a GLB

Example"

- L is natural numbers {0, 1, 2, 3, ... }
- ⊑ is ≤

Every finite subset of L has a LUB Every subset of L has a GLB Therefore (L, \leq) is a lattice No infinite subset of L has a LUB

CS 412/413 Spring 2008

Complete Lattices

- A pair (L, ⊑) is a complete lattice if:
 1. (L, ⊑) is a partial order
 2. Any non-empty subset S ⊆ L has a LUB and a GLB
- Can identify and name two special elements:
 1. Bottom element: ⊥ = GLB(L)
 2. Top element: ⊤ = LUB(L)
- All finite lattices are complete

Example"'

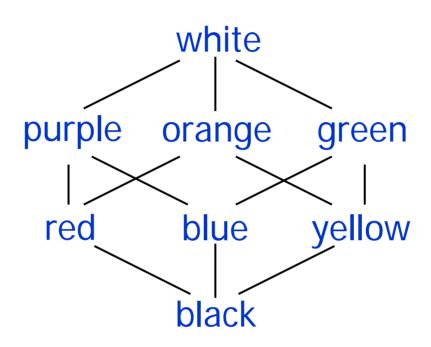
- L is natural numbers {0, 1, 2, 3, ... }
- ⊑ is ≤

Every finite subset of L has a GLB and LUB Therefore (L, \leq) is a lattice Every infinite subset of L has a LUB Therefore (L, \leq) is a complete lattice However, L has infinite ascending chains



CS 412/413 Spring 2008

Example''''



black is GLB for {red, blue, yellow}

white is LUB for {purple, orange, green}

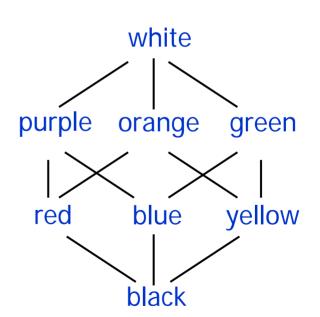
Meet and Join

- By definition, for any lattice L, GLBs and LUBs are defined for finite sets
- Define operators meet (□) and join (□) as

$$- x \Pi y = GLB(\{x,y\})$$

$$- x \sqcup y = LUB(\{x,y\})$$

- For any finite set $S \subseteq L$
 - ⊓S = GLB(S)
 - ⊔S = LUB(S)



CS 412/413 Spring 2008

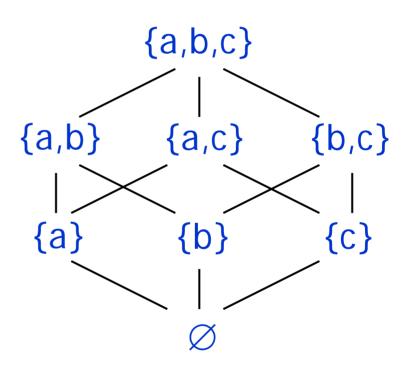
Example'''' Lattice

- Consider S = {a,b,c} and its power set P = {Ø, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}
- Define partial order as set inclusion: $X \subseteq Y$
 - Reflexive $X \subseteq X$
 - Anti-symmetric $X \subseteq Y, Y \subseteq X \implies X = Y$
 - Transitive $X \subseteq Y, Y \subseteq Z \implies X \subseteq Z$
- Also, for any two elements of P, there is a set that includes both and another set that is included in both
- Therefore (P, ⊆) is a (complete) lattice

CS 412/413 Spring 2008

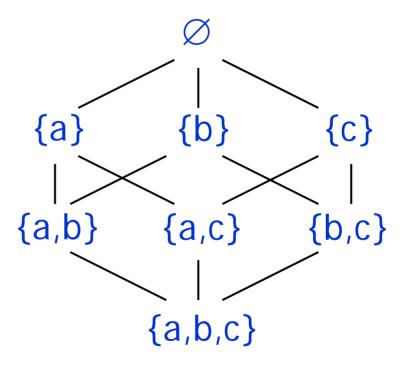
Power Set Lattice

- Partial order: ⊆
 (set inclusion)
- Meet: ∩
 (set intersection)
- Join: U
 (set union)
- Top element: {a,b,c}
 (whole set)
- Bottom element: Ø (empty set)



Reversed Lattice

- Partial order: ⊇
 (set inclusion)
- Meet: U
 (set union)
- Join: ∩
 (set intersection)
- Top element: Ø (empty set)
- Bottom element: {a,b,c} (whole set)



Relation To Dataflow Analysis

- Information computed by live variable analysis and available copies can be expressed as elements of lattices
- Live variables: if V is the set of all variables in the program and P the power set of V, then:
 - (P, ⊆) is a lattice
 - sets of live variables are elements of this lattice

Relation To Dataflow Analysis

- Copy Propagation:
 - V is the set of all variables in the program
 - V x V the Cartesian product representing all possible copy instructions
 - P the power set of V x V
- Then:
 - (P, ⊆) is a lattice
 - sets of available copies are lattice elements

Using Lattices

- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to:
 - Determine how each instruction in the program changes the information
 - Determine how information changes at join/split points in the control flow

Transfer Functions

- Dataflow analysis defines a transfer function
 F: L → L for each instruction in the program
- Describes how the instruction modifies the information
- Consider in[I] is information before I, and out[I] is information after I
- Forward analysis: out[I] = F(in[I])
- Backward analysis: in[I] = F(out[I])

Basic Blocks

- Can extend the concept of transfer function to basic blocks using function composition
- Consider:
 - Basic block B consists of instructions (I₁, ..., I_n) with transfer functions F₁, ..., F_n
 - in[B] is information before B
 - out[B] is information after B
- Forward analysis:

out[B] = $F_n(...(F_1(in[B]))) = F_n^{\circ}...^{\circ} F_1(in[B])$

Backward analysis:

 $in[I] = F_1(\dots (F_n(out[i]))) = F_1^{\circ} \dots ^{\circ} F_n(out[B])$

CS 412/413 Spring 2008

Split/Join Points

- Dataflow analysis uses meet/join operations at split/join points in the control flow
- Consider in[B] is lattice information at beginning of block B and out[B] is lattice information at end of B
- Forward analysis: $in[B] = \Pi \{out[B'] \mid B' \in pred(B)\}$
- Backward analysis: $out[B] = \Pi \{in[B'] \mid B' \in succ(B)\}$
- Can alternatively use join operation ⊔ (equivalent to using the meet operation ⊓ in the reversed lattice)

Cartesian Products

- Let L_1 , ..., L_n be sets
- Cartesian product of L_1, \ldots, L_n is $\{\ < x_1, \ldots, x_n > \ | \ x_i \in L_i \}$
- If L₁, ..., L_n are (complete) lattices then their Cartesian product is a (complete) lattice, where \sqsubseteq is defined by $\langle x_1, ..., x_n \rangle \sqsubseteq \langle y_1, ..., y_n \rangle$ iff for all i, $x_i \sqsubseteq y_i$

Information as Cartesian Product

- Consider a program analysis in which n program analysis variables range over lattice L
- We view the analysis as computing an n-tuple of Lvalues, i.e., a point in the n-ary Cartesian product of L
- Each change of one program analysis variable changes one component of the n-tuple
- Analysese will terminate because we will only consider
 - Lattices with no infinite descending chains
 - "Monotonic" transfer functions that move us down (or not at all) in the lattice

More About Lattices

- In a lattice (L, ⊑), the following are equivalent:
 1. x ⊑ y
 - 2. x = y2. $x \sqcap y = x$
 - 3. $x \sqcup y = y$
- Note: meet and join operations were defined using the partial order relation

Proof (1 & 2)

- Prove that $x \sqsubseteq y$ implies $x \sqcap y = x$:
 - x is a lower bound of {x,y}
 - All lower bounds of $\{x,y\}$ are less = than x,y
 - In particular, they are less= than x
- Prove that $x \sqcap y = x$ implies $x \sqsubseteq y$:
 - x is a lower bound of {x,y}
 - x is less = than x and y
 - In particular, x is less = than y

Properties of Meet and Join

- The meet and join operators are:
 - 1. Associative $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$
 - 2. Commutative $x \sqcap y = y \sqcap x$
 - 3. Idempotent: $x \sqcap x = x$
- Property: If "⊓" is an associative, commutative, and idempotent operator, then the relation "⊑" defined as x⊑y iff x ⊓ y = x is a partial order
- Above property provides an alternative definition of a partial orders and lattices starting from the meet (join) operator

CS 412/413 Spring 2008