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Live Variable Analysis

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

What are the live
variables at each 
program point?

Method:
1. Define sets of 

live variables
1. Build constraints
2. Solve constraints
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Derive Constraints

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

Constraints for each 
instruction:

in[I]=(out[I]-def[I])

∪ use[I]

Constraints for 
control flow:

out[B] =    ∪ in[B’]
B’∈ succ(B)
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Derive Constraints

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1

L2

L3

L4

L5

L9

L10

L11

L12

L7

L8

L6

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1 

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11
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Initialization

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={}

L2 ={}
L3 ={}
L4 ={}

L5 ={}

L9 ={}

L10 ={}

L11 ={}

L12 ={}

L7 ={}

L8 ={}

L6 ={}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1 

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11
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Iteration 1

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,d}
L3 ={y,z,d}
L4 ={z,d}

L5 ={y,z,d}

L9 ={}

L10 ={}

L11 ={x}

L12 ={}

L7 ={y,z}

L8 ={}

L6 ={y,z}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1 

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11
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Iteration 2

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1 

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11
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Fixed-point!

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

L1 = L2 ∪ {c}

L3 = (L4-{x})∪ {y}

L4 = (L5-{y})∪ {z}

L5 = L6 ∪ {d}

L7 = (L8-{x})∪ {y,z}

L9 = L10-{z}

L11 = (L12-{z})∪ {x}

L10 = L1 

L6 = L7 ∪ L9

L8 = L9

L2 = L3 ∪ L11
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Final Result

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

x live here !

Final result: sets 
of live variables at 
each program point
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Characterize All Executions

x = y+1
y =2*z
if (d)

z = x

if (c)

x = y+z

z = 1

L1={x,y,z,c,d}

L2 ={x,y,z,c,d}
L3 ={y,z,c,d}
L4 ={x,z,c,d}

L5 ={x,y,z,c,d}

L9 ={x,y,c,d}

L10 ={x,y,z,c,d}

L11 ={x}

L12 ={}

L7 ={y,z,c,d}

L8 ={x,y,c,d}

L6 ={x,y,z,c,d}

The analysis detects
that there is an 
execution that uses
the value x = y+1
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Generalization
• Live variable analysis and detection of available 

copies are similar:
– Define some information that they need to compute
– Build constraints for the information 
– Solve constraints iteratively:

• The information always “increases” during iteration
• Eventually, it reaches a fixed point.

• We would like a general framework
– Framework applicable to many other analyses
– Live variable/copy propagation = instances of the 

framework
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Dataflow Analysis Framework
• Dataflow analysis = a common framework for 

many compiler analyses
– Computes some information at each program point
– The computed information characterizes all possible 

executions of the program

• Basic methodology:
– Describe information about the program using an 

algebraic structure called a lattice
– Build constraints that show how instructions and 

control flow influence the information in terms of 
values in the lattice

– Iteratively solve constraints
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Partial Order Relations

• Lattice definition builds on the concept of a 
partial order relation

• A partial order (P,⊑) consists of:
– A set P
– A partial order relation ⊑ that is:

1. Reflexive x ⊑ x
2. Anti-symmetric  x ⊑ y, y ⊑ x  ⇒ x = y
3. Transitive: x ⊑ y, y ⊑ z  ⇒ x ⊑ z

• Called a “partial order” because not all elements are 
comparable, in contrast with a total order, in which

¬4. Total x ⊑ y or y ⊑ x
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Example
• P is {red, blue, yellow, purple, orange, green}
• ⊑

red ⊑ purple, red ⊑ orange,
blue ⊑ purple, blue ⊑ green, 
yellow ⊑ orange, blue ⊑ green,
red ⊑ red, 
blue ⊑ blue, 
yellow ⊑ yellow, 
purple ⊑ purple, 
orange ⊑ orange, 
green ⊑ green



CS 412/413   Spring 2008 Introduction to Compilers 15

Hasse Diagrams
• A graphical representation 

of a partial order, where 
– x and y are on the same 

level when they are 
incomparable

– x is below y when x⊑y and 
x≠y

– x is below y and connected 
by a line when x⊑y, x≠y, 
and there is no z such that 
x⊑z, z⊑y, x≠z, and y≠z

red blue yellow

purple orange green
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Lower/Upper Bounds

• If (P, ⊑) is a partial order and S ⊆ P, then:
1. x∈P is a lower bound of S if x ⊑ y, for all y∈S
2. x∈P is an upper bound of S if y ⊑ x, for all y∈S

• There may be multiple lower and upper bounds 
of the same set S
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Example, cont.

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.

red blue yellow

purple orange green

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}
no upper bound for {purple, orange}
no upper bound for {orange, green}
no upper bound for {purple, green}
etc. 
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Example, cont.

red is lower bound for {purple, orange}
blue is lower bound for {purple, green}
yellow is lower bound for {orange, green}
no lower bound for {purple, orange, green}
no lower bound for {red, blue}
no lower bound for {red, yellow}
no lower bound for {blue, yellow},
etc.

purple is upper bound for {red, blue}
orange is upper bound for {red, yellow}
green is upper bound for {orange, green}
no upper bound for {red, bule, yellow}
no upper bound for {purple, orange}
no upper bound for {orange, green}
no upper bound for {purple, green}
etc. 

red blue yellow

purple orange green

red’

red’ is also a lower bound for {purple, orange} 
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LUB and GLB
• Define least upper bound (LUB) and greatest lower 

bound (GLB) as follows:

• If (P, ⊑) is a partial order and S ⊆ P, then:
1. x∈P is  GLB of S if:

a) x is a lower bound of S
b) y ⊑ x, for any lower bound y of S

2. x∈P is a LUB of S if:
a) x is an upper bound of S
b) x ⊑ y, for any upper bound y of S

• … are GLB and LUB unique?
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Example, cont.

red is GLB for {purple, orange}
blue is GLB for {purple, green}
yellow is GLB for {orange, green}

red blue yellow

purple orange green

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}
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Example’

blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}
purple is LUB for {red’, blue}
orange is LUB for {red’, yellow}

red blue yellow

purple orange green

red’

red’ is a lower bound for {purple, orange}
red is a lower bound for {purple, orange}
There is no GLB for {purple, orange}
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Lattices

• A pair (L, ⊑) is a lattice if:
1.  (L, ⊑) is a partial order
2. Any finite non-empty subset S ⊆ L has a LUB and a 
GLB
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Example”
• L is natural numbers {0, 1, 2, 3, … }
• ⊑ is ≤

0

3

2

1

Every finite subset of L has a LUB
Every subset of L has a GLB
Therefore (L, ≤) is a lattice
No infinite subset of L has a LUB

...
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Complete Lattices

• A pair (L, ⊑) is a complete lattice if:
1.  (L, ⊑) is a partial order
2. Any non-empty subset S ⊆ L has a LUB and a GLB

• Can identify and name two special elements:
1. Bottom element: ⊥ = GLB(L)
2. Top element:  ⊤ = LUB(L)

• All finite lattices are complete
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Example”’
• L is natural numbers {0, 1, 2, 3, … }
• ⊑ is ≤

0

3

2

1

Every finite subset of L has a GLB and LUB
Therefore (L, ≤) is a lattice
Every infinite subset of L has a LUB
Therefore (L, ≤) is a complete lattice
However, L has infinite ascending chains

...

⊤
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Example’’’’

black is GLB for {red, blue, yellow} white is LUB for {purple, orange, green}

red blue yellow

purple orange green

black

white
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Meet and Join

• By definition, for any lattice L, GLBs and LUBs 
are defined for finite sets

• Define operators meet (⊓) and join (⊔) as
– x ⊓ y = GLB({x,y})
– x ⊔ y = LUB({x,y})
– For any finite set S ⊆ L

• ⊓S = GLB(S)
• ⊔S = LUB(S)

red blue yellow

purple orange green

black

white
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Example’’’’’ Lattice
• Consider S = {a,b,c} and its power set P = 

{∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}

• Define partial order as set inclusion: X ⊆ Y
– Reflexive X ⊆ X
– Anti-symmetric  X ⊆ Y, Y ⊆ X  ⇒ X = Y
– Transitive X ⊆ Y, Y ⊆ Z  ⇒ X ⊆ Z

• Also, for any two elements of P, there is a set 
that includes both and another set that is 
included in both

• Therefore (P, ⊆) is a (complete) lattice
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Power Set Lattice
• Partial order: ⊆

(set inclusion)

• Meet: ∩
(set intersection)

• Join: ∪
(set union)

• Top element: {a,b,c}
(whole set)

• Bottom element: ∅
(empty set)

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅
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Reversed Lattice
• Partial order: ⊇

(set inclusion)

• Meet: ∪
(set union)

• Join: ∩
(set intersection)

• Top element: ∅
(empty set)

• Bottom element: {a,b,c}
(whole set)

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

{a,b,c}
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Relation To Dataflow Analysis

• Information computed by live variable analysis 
and available copies can be expressed as 
elements of lattices

• Live variables: if  V is the set of all variables in 
the program and P the power set of V, then:
– (P, ⊆) is a lattice
– sets of live variables are elements of this 

lattice
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Relation To Dataflow Analysis

• Copy Propagation:
- V is the set of all variables in the program
- V x V the Cartesian product representing all 
possible copy instructions
- P the power set of V x V

• Then:
– (P, ⊆) is a lattice
– sets of available copies are lattice elements
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Using Lattices

• Assume information we want to compute in a 
program is expressed using a lattice L

• To compute the information at each program 
point we need to:
– Determine how each instruction in the program 

changes the information
– Determine how information changes at join/split 

points in the control flow
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Transfer Functions

• Dataflow analysis defines a transfer function
F : L → L for each instruction in the program

• Describes how the instruction modifies the 
information

• Consider in[I] is information before I, and out[I] is 
information after I

• Forward analysis: out[I] = F(in[I])
• Backward analysis: in[I] = F(out[I])
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Basic Blocks
• Can extend the concept of transfer function 

to basic blocks using function composition

• Consider:
– Basic block B consists of instructions (I1, …, In) with 

transfer functions F1, …, Fn
– in[B] is information before B
– out[B] is information after B

• Forward analysis: 
out[B] = Fn(…(F1(in[B]))) = Fn °... ° F1(in[B])

• Backward analysis: 
in[I] = F1(… (Fn(out[i])))  = F1 °... ° Fn(out[B])
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Split/Join Points
• Dataflow analysis uses meet/join operations at split/join 

points in the control flow

• Consider in[B] is lattice information at beginning of 
block B and out[B] is lattice information at end of B

• Forward analysis:   in[B] = ⊓ {out[B’] | B’∈pred(B)} 

• Backward analysis: out[B] = ⊓ {in[B’] | B’∈succ(B)}

• Can alternatively use join operation ⊔ (equivalent to 
using the meet operation ⊓ in the reversed lattice)



Cartesian Products
• Let L1, …, Ln be sets

• Cartesian product of L1,…,Ln is
{ <x1,…,xn> | xi ∈ Li}  

• If L1, …, Ln are (complete) lattices then their Cartesian 
product is a (complete) lattice, where ⊑ is defined by 
<x1,…,xn> ⊑ <y1,…,yn> iff for all i, xi ⊑ yi
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Information as Cartesian Product
• Consider a program analysis in which n program 

analysis variables range over lattice L
• We view the analysis as computing an n-tuple of L-

values, i.e., a point in the n-ary Cartesian product of L
• Each change of one program analysis variable changes 

one component of the n-tuple
• Analysese will terminate because we will only consider 

– Lattices with no infinite descending chains
– “Monotonic” transfer functions that move us down (or not at 

all) in the lattice

CS 412/413   Spring 2008 Introduction to Compilers 38
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More About Lattices

• In a lattice (L, ⊑), the following are equivalent:
1. x ⊑ y
2. x ⊓ y = x
3. x ⊔ y = y

• Note: meet and join operations were defined 
using the partial order relation
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Proof (1 & 2)
• Prove that x ⊑ y implies x ⊓ y = x:

– x is a lower bound of {x,y}
– All lower bounds of {x,y} are less= than x,y
– In particular, they are less= than x

• Prove that x ⊓ y = x implies x ⊑ y :
– x is a lower bound of {x,y}
– x is less= than x and y
– In particular, x is less= than y
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Properties of Meet and Join
• The meet and join operators are:

1. Associative (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z)
2. Commutative  x ⊓ y  = y ⊓ x
3. Idempotent: x ⊓ x = x

• Property: If “⊓” is an associative, commutative, and 
idempotent operator, then the relation “⊑” defined as 
x⊑y iff x ⊓ y = x is a partial order

• Above property provides an alternative definition of a 
partial orders and lattices starting from the meet (join) 
operator
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