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What Are Types?

e Types describe the values possibly computed
during execution of the program

e Types are predicate on values
— E.g., “int X" in Java means “x e [-283%, 231)”
— Think: “type = set of possible values”

e Type errors: improper, type-inconsistent
operations during program execution

e Type-safety: absence of type errors at run time
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How to Ensure Type-Safety?

e Bind (assign) types, then check types

— Type binding: defines types for constructs in the
program (e.g., variables, functions)
e Can be either explicit (int x) or implicit (x = 1)
e Type consistency (safety) = correctness with respect to the
type bindings

— Type checking: static semantic checks to enforce the
type safety of the program
e Enforce a set of type-checking rules
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Static vs. Dynamic Typing

e Static and dynamic typing refer to type
definitions (i.e., bindings of types to variables,
expressions, etc.)

— Statically typed language: types are defined and
checked at compile-time, and do not change during
the execution of the program

e E.g., C, Java, Pascal

— Dynamically typed language: types defined and

checked at run-time, during program execution
e E.g., Lisp, Scheme, Smalltalk
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Strong vs. Weak Typing

e Strong and weak typing refer to how much type
consistency is enforced

— Strongly typed languages: guarantees that accepted
programs are type-safe

— Weakly typed languages: allow programs that contain
type errors

e Can achieve strong typing using either static or
dynamic typing
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Soundness

e Sound type systems: can statically ensure that
the program is type-safe

e Soundness implies strong typing

e Static type safety requires a conservative
approximation of the values that may occur
during all possible executions
— May reject type-safe programs
— Need to be expressive: reject as few type-safe

programs as possible
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Concept Summary

e Static vs dynamic typing
— when to define/check types?

e Strong vs weak typing
— how many type errors?

e Sound type systems

— statically catch all type errors (and possibly reject some
programs that have no type errors)

CS 412/413 Spring 2008 Introduction to Compilers 7



Classification

Strong Typing Weak Typing

ML  Pascal C
Static Typing
Java Modula-3 C++
Scheme
Dynamic Typing | | oStoCrPt assembly code
Smalltalk
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Why Static Checking?

e Efficient code
— Dynamic checks slow down the program

e Guarantees that all executions will be safe

— With dynamic checking, you never know when the
next execution of the program will fail due to a type
error

e But is conservative for sound systems
— Needs to be expressive: reject few type-safe programs
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Type Systems

e Type Is predicate on value

» Type expressions: describe the possible types in
the program: int, string, array[], Object, etc.

e Type system: defines types for language
constructs (e.g., expressions, statements)

CS 412/413 Spring 2008 Introduction to Compilers 10



Type Expressions

e Languages have basic types

(a.k.a. primitive types or ground types)
— E.qg., Int, char, boolean

e Build type expressions using basic types:

— Type constructors
— Type aliases
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Array Types

Various kinds of array types in different programming
languages

array(T) : array with elements of type T and no bounds
— C, Java: int [ ], Modula-3: array of integer

array(T, S) : array with size
— C: int[10], Modula-3: array[10] of integer
— May be indexed 0..size-1

array(T,L,U) : array with upper/lower bounds
— Pascal or Ada: array[2 .. 5] of integer

array(T, S, ..., S,)) : multi-dimensional arrays
— FORTRAN: real(3,5)
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Record Types

e Arecord is {id,: T,, ... , I1d: T, } for some
identifiers id; and types T.

e Supports access operations on each field,
with corresponding type

e C: struct { int a; float b; }
e Pascal: record a: integer; b: real; end
e Objects: generalize the notion of records
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Pointer Types

e Pointer types characterize values that are
addresses of variables of other types

e Pointer(T) : pointer to an object of type T

e C pointers: T* (e.q., Int *X;)
e Pascal pointers: T (e.g., X: Ninteger;)
e Java: object references
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Function Types

Type: T xT, x .. x T, —> T,

Function value can be invoked with some argument
expressions with types T;, returns return type T,

C functions: Int pow(int X, Iint y)
type: int x int — int
Java: methods have function types

Some languages have first-class functions
— usually in functional languages, e.g., ML, LISP
— C and C++ have function pointers
— Java doesn’t
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Type Aliases

e« Some languages allow type aliases (type
definitions, equates)
— C: typedef int int_array] |;
— Modula-3: type int_array = array of int;
— Java doesn’t allow type aliases

e Aliases are not type constructors!
— Int_array is the same type as int [ ]

e Different type expressions may denote the
same type
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Implementation

e Use a separate class hierarchy for type ASTSs:

class BaseType extends Type { ... }

class IntType extends BaseType { ... }

class BoolType extends Base Type { ... }

class ArrayType extends Type { Type elemType; }
class FunctionType extends Type { ... }

e Translate type expressions to type objects during
parsing

non terminal Type type
type ::= BOOLEAN {: RESULT = new BoolType(); :}
| ARRAY LBRACKET type:t RBRACKET {: RESULT = new ArrayType(t); :}

e Bind names to type objects in symbol table during
subsequent AST traversal
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Processing Type Declarations

e Type declarations add new identifiers and
their types in the symbol tables

e Class definitions must be added to symbol
table:

class_defn ::= CLASS ID:id { decls:d }

e Forward references require multiple passes
over AST to collect legal names

classA{ B Db; }
classB { ... }
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Type Comparison

e Option 1: implement a method T1.Equals(T?2)
— Must compare type objects for T1 and T2

— For object-oriented language: also need sub-typing:
T1.SubtypeOf(T2)

e Option 2: use unique objects for each distinct type

— each type expression (e.g., array[int] ) resolved to
same type object everywhere

— Faster type comparison: can use ==
— Object-oriented: check subtyping of type objects
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Type-Checking

e Type-checking = verify typing rules
 Implement by an AST visitor

class typeCheck implements Visitor {

Object visit(Add e, Object symbolTable) {
Type t1 = (int) e.el.accept(this, symbolTable);
Type t2 = (int) e.e2.accept(this, symbolTable);
If (t1 == Int && t2 == Int) return Int;
else throw new TypeCheckError(“+”);
h

Object visit(Num e, Object symbolTable) {
return Int;
b

Object visit(ld e, Object symbolTable) {
return (SymbolTable)symbolTable.lookupType(e);

}
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Records

e Objects combine features of records and abstract data types

e Records = aggregate data structures
— Combine several variables into a higher-level structure
— Type is essentially Cartesian product of element types
— Need selection operator to access fields
— Pascal records, C structures

e Example: struct {int x; float f; char a,b,c; inty } A;
— Type: {int x; float f; char a,b,c; inty }
— Selection: Ax =1; n=A.y;
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ADTSs

e Abstract Data Types (ADT): separate implementation from
specification
— Specification: provide an abstract type for data
— Implementation: must match abstract type

e Example: linked list

Implementation

Cell = { int data; Cell next; } specification
List = {int len; Cell head, tail; int length():
int length() { return l.len; } List append (int
int first() { return head.data; d);
Llist rest() { return head.next; Int first();
List append(intd) { ... } :
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Objects as Records

e Objects have fields _
class List {
. .. int len;
e ...IN addltlon, they have Cell head, tall,
methods = procedures _
that manipulate the data ~ Intlength();
(fields) in the object List append(int d);
Int first();
List rest();
e Hence, objects combine 1 O
data and computation
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Objects as ADTs

= Specification: signatures of public methods and fields of object

e Implementation: Source code for a class defines the concrete
type (implementation)

class List {
private int len;
private Cell head, tall;

public static int length() {...},;
public static List append(intd) {...};
public static int first() {...} ;
public static List rest() {...};

}
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Objects

What objects are:

— Aggregate structures that combine data (fields) with
computation (methods)

— Fields have public/private qualifiers (can model ADTS)

Need special support in many compilation stages:
— Type checking

— Static analysis and optimizations

— Implementation, run-time support

Features:

— Inheritance, subclassing, polymorphism, subtyping,
overriding, overloading, dynamic dispatch, abstract
classes, interfaces, etc.
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Inheritance

e Inheritance = mechanism that exposes common features of
different objects

e C(Class B extends class A = “B has the features of A, plus
some additional ones”, i.e., B inherits the features of A

— B is subclass of A; and A is superclass of B

class Point {
float X, y;

float getx({ ... };
float gety({ ... };
by

class ColoredPoint extends Point

{

Int color;
Int getcolor(){ ... };

27

CS 412/413 Spring 2007 lon to Compilers



Single vs.

Multiple Inheritance

e Single inheritance: inherit from at most one other object (Java)

e Multiple inheritance:

may inherit from multiple objects (C++)

class A {
INt a;
INt

geta()...}

class B {
Int b;
INt

getb(Q)... };

CS 412/413 Spring 2007

classC: A, B{
Int c;
Int

getcOA... };

Introduction to Compilers 28



Inheritance and Scopes

e How do objects access fields and methods of:
— Their own?
— Their superclasses?
— Other unrelated objects?

e Each class declaration introduces a scope
— Contains declared fields and methods
— Scopes of methods are sub-scopes

e Inheritance implies a hierarchy of class scopes
— If B extends A, then scope of A is a parent scope for B
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Example

class A { Global symtab

- |n-t X, A Obj =A=

Int f(int z) { B obj |=B=
intv; ... obj

) —
1 =A= symtab / \ C= symtab
_A_

class B extends A {

bool V; fun int — int Z int
int t;
} =B= symta / \ f Symtab
bool par
class C { t var | int vV | var int
A 0O: |
int z;
ks
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Example

class A { Global symtab

- |n-t X, A Obj =A=

Int f(int z) { B obj |=B=
intv; ... obj

) —
1 =A= symtab / \ C= symtab
_A_

class B extends A {

bool V; fun int — int Z int
int t;
} =B= symta / \ f Symtab
bool par
class C { t var | int vV | var int
A 0O: |
int z;
ks
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Class Scopes

e Resolve an identifier occurrence in a method:

— Look for symbols starting with the symbol table of the
current block in that method

e Resolve qualified accesses:
— Accesses o.f, where o Is an object of class A

— Walk the symbol table hierarchy starting with the symbol
table of class A and look for identifier f

— Special keyword this refers to the current object, start
with the symbol table of the enclosing class
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Class Scopes

e Multiple inheritance:
— A class scope has multiple parent scopes
— Which should we search first?
— Problem: may find symbol in both parent scopes!

e Overriding fields:
— Fields defined in a class and in a subclass
— Inner declaration shadows outer declaration
— Symbol present in multiple scopes
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Inheritance and Typing

Classes have types
— Type is Cartesian product of field and method types
— Type name is the class name

What is the relation between types of parent and inherited
objects?

Subtyping: if class B extends A then class A
— Type B is a subtype of A |
— Type A is a supertype B B extends AI

Notation: B <: A
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Subtype ~ Subset

“A value of type S may be used wherever
a value of type T Is expected”

S<: T — values(S) c values(T)

alues of\glyes of
type S / type T
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Subtype Properties

e If type Sis a subtype of type T (S <: T), then:

a value of type S may be used wherever a value of type T is
expected (e.g., assignment to a variable, passed as
argument, returned from method)

ColoredPoint <: Point

Point Xx;
ColoredPoint v; T T
X =V; subtype supertype

e Polymorphism: a value is usable as several types

e Subtype polymorphism: code using T's can also use S’s; S
objects can be used as S's or T’s.
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Assignment Statements (Revisited)

A id:T|-E:T
A id:T]-Id=E:T

(original)

A id:T |-E:S where S<:T (with subtyping)
A idT|—-id=E:T
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How To Test the SubType Relation

class A {
int x: Global symtab
Int f(int z) { A | obj FA=
Intv; ... B obj [=B=
by obj FC=
¥ =A= symtab / \ C= symtab
class B extends A { =
bool y; fun int — int b —B=
Int t;
¥ =B= Symta / \ f symtab
class C { bool arg
A a; t var | int v | var int
B b; |
a=b;
+
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Implications of Subtyping

e We don't statically know the types of object references
— Can be the declared class or any subclass
— Precise types of objects known only at run-time

e Problem: overriden fields / methods

— Declared in multiple classes in hierarchy. Don’t know statically
which declaration to use at compile time

— Java solution:

« statically resolve fields using declared type of reference; no field
overriding

e dynamically resolve methods using the object’s type (dynamic
dispatch); in support of static type checking, a method m overrides
m’ only if the signatures are “nearly” identical --- the same number
and types of parameters, and the return type of m a subtype of
the return type of m’
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Example

class A { Global symtab
. t]lc?'t z[(;){ A | obj |=A
Int f(int z :
intv; ... B OEJ_ =B
+ o)

class B extends A {

L =A= symtab / \ C symtab
— A=

int%%?r:tyé) { fun int - int b —B—
mt}\.N; - =B= Symta/ \ f symtab
¥ y bool arg
class C { g fun int - int v | var int
A a = new B(); |
B b =new B(); g Symtgb
LoaX ... z |arg | int
.. by .. w | var | int
ks
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Example

var

—RB=

class A { Global symtab
: t]lc?'t 3[(; ) { A | obj |=A
int f(int z _
intv; ... B obj EB
} , obj
L =A= symtab / \ C= symtab
class B extends A { —
bool Xx;
int f(int 2) { f fun int - int b
MEW - == symtah f symtab
+
} X | var | bool z |arg | int
class C { f | funjint—ing |V Valr int
A a = new B();
B b = new B(); f symtab
LeauX ., z |arg | Int
. b.X ... w | var | int
ke
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Example

var

—B=

class A { Global symtab
: t]lc?'t 3[(; ) { A | obj |=A
int f(int z _
intv; ... B obj EB
Y obj
¥ =A= symtab / \ C= symtab
class B extends A { —
bool Xx;
int_f(int 7) { f fun Int = int b
mt}yv - =B= Symta/ \ f symtab
} X | var | bool z |arg | int
class C { f | funljint—>intg | V Valr Int
A a = new B();
B b = new B(); f symtab
Loaf() ... z |arg | Int
. b.f(1) ... w | var | Int
¥
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Objects and Typing

e Objects have types
— ... but also have implementation code for methods

e ADT perspective:
— Specification = typing
— Implementation = method code, private fields

— Objects mix specification with implementation

e Can we separate types from implementation?
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Interfaces

e |nterfaces are pure types; they don't give any

Implementation

Implementation

class MyList implements List

{

private int len;
private Cell head, tail,

public int length() {...};
public List append(int d)

{.}
public int first() {...} ;

B

specification

interface List {
int length();
List append(int
d);
int first();
List rest();

}

CS 412/413 Spring 2007 Introduction to Compilers 44



Multiple Implementations

e Interfaces allow multiple implementations

InterfaggaksEiimpleList implements List {
Int length();private int data;
Lis=appenginBte SimpleList next:;
Int f”rStO ublic int length()
List reS«EQegrn 1+next.length() } ...

J

class LenList implements List {
private int len;
private Cell head, tail,
private LenList() {...}
public List append(intd) {...}
public int length() { return len; }
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Implementations of Multiple Interfaces

Interface A {
int foo();
}
iInterface B {
Int bar();
}
class AB implements A, B {
int foo(){ ... }
int bar(){ ... }
b
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Subtyping vs. Subclassing

Can use inheritance for interfaces
— Build a hierarchy of interfaces

Interface A {...} B <-A
Interface B extends A {...} -

Objects can implement interfaces

class C implements A {...}

Subtyping: interface inheritance
Subclassing: object (class) inheritance
— Subclassing implies subtyping
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Abstract Classes

e Classes define types and some values (methods)
e |Interfaces are pure object types

e Abstract classes are halfway:
— define some methods
— leave others unimplemented
— N0 objects (instances) of abstract class
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Subtypes In Java

Interface I, class C class C;
extends I, { ... } Implements I { extends C,
.. }
I|2 ! <2
1, C Cq
I, <: 1, C<:l C,<:C,
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Subtype Hierarchy

e Introduction of subtype relation creates a
hierarchy of types: subtype hierarchy

/‘
11
/I\
typeor |Cl |2 13
subtype < PN
hierarchy C2 C3 C4 _ :
| lass/inheritance
hierarchy

. C5
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