CS412/CS5413

Introduction to Compilers
Tim Teitelbaum

Lecture 17: Types and Type-Checking
25 Feb 08

CS 412/413 Spring 2008 Introduction to Compilers

What Are Types?

e Types describe the values possibly computed
during execution of the program

e Types are predicate on values
— E.g., “int X" in Java means “x e [-283%, 231)”
— Think: “type = set of possible values”

e Type errors: improper, type-inconsistent
operations during program execution

e Type-safety: absence of type errors at run time

CS 412/413 Spring 2008 Introduction to Compilers 2

How to Ensure Type-Safety?

e Bind (assign) types, then check types

— Type binding: defines types for constructs in the
program (e.g., variables, functions)
e Can be either explicit (int x) or implicit (x = 1)
e Type consistency (safety) = correctness with respect to the
type bindings

— Type checking: static semantic checks to enforce the
type safety of the program
e Enforce a set of type-checking rules

CS 412/413 Spring 2008 Introduction to Compilers 3

Static vs. Dynamic Typing

e Static and dynamic typing refer to type
definitions (i.e., bindings of types to variables,
expressions, etc.)

— Statically typed language: types are defined and
checked at compile-time, and do not change during
the execution of the program

e E.g., C, Java, Pascal

— Dynamically typed language: types defined and

checked at run-time, during program execution
e E.g., Lisp, Scheme, Smalltalk

CS 412/413 Spring 2008 Introduction to Compilers

Strong vs. Weak Typing

e Strong and weak typing refer to how much type
consistency is enforced

— Strongly typed languages: guarantees that accepted
programs are type-safe

— Weakly typed languages: allow programs that contain
type errors

e Can achieve strong typing using either static or
dynamic typing

CS 412/413 Spring 2008 Introduction to Compilers 5

Soundness

e Sound type systems: can statically ensure that
the program is type-safe

e Soundness implies strong typing

e Static type safety requires a conservative
approximation of the values that may occur
during all possible executions
— May reject type-safe programs
— Need to be expressive: reject as few type-safe

programs as possible

CS 412/413 Spring 2008 Introduction to Compilers

Concept Summary

e Static vs dynamic typing
— when to define/check types?

e Strong vs weak typing
— how many type errors?

e Sound type systems

— statically catch all type errors (and possibly reject some
programs that have no type errors)

CS 412/413 Spring 2008 Introduction to Compilers 7

Classification

Strong Typing Weak Typing

ML Pascal C
Static Typing
Java Modula-3 C++
Scheme
Dynamic Typing | | oStoCrPt assembly code
Smalltalk

CS 412/413 Spring 2008 Introduction to Compilers

Why Static Checking?

e Efficient code
— Dynamic checks slow down the program

e Guarantees that all executions will be safe

— With dynamic checking, you never know when the
next execution of the program will fail due to a type
error

e But is conservative for sound systems
— Needs to be expressive: reject few type-safe programs

CS 412/413 Spring 2008 Introduction to Compilers 9

Type Systems

e Type Is predicate on value

» Type expressions: describe the possible types in
the program: int, string, array[], Object, etc.

e Type system: defines types for language
constructs (e.g., expressions, statements)

CS 412/413 Spring 2008 Introduction to Compilers 10

Type Expressions

e Languages have basic types

(a.k.a. primitive types or ground types)
— E.qg., Int, char, boolean

e Build type expressions using basic types:

— Type constructors
— Type aliases

CS 412/413 Spring 2008 Introduction to Compilers

11

Array Types

Various kinds of array types in different programming
languages

array(T) : array with elements of type T and no bounds
— C, Java: int [], Modula-3: array of integer

array(T, S) : array with size
— C: int[10], Modula-3: array[10] of integer
— May be indexed 0..size-1

array(T,L,U) : array with upper/lower bounds
— Pascal or Ada: array[2 .. 5] of integer

array(T, S, ..., S,)) : multi-dimensional arrays
— FORTRAN: real(3,5)

CS 412/413 Spring 2008 Introduction to Compilers 12

Record Types

e Arecord is {id,: T,, ... , I1d: T, } for some
identifiers id; and types T.

e Supports access operations on each field,
with corresponding type

e C: struct { int a; float b; }
e Pascal: record a: integer; b: real; end
e Objects: generalize the notion of records

CS 412/413 Spring 2008 Introduction to Compilers

13

Pointer Types

e Pointer types characterize values that are
addresses of variables of other types

e Pointer(T) : pointer to an object of type T

e C pointers: T* (e.q., Int *X;)
e Pascal pointers: T (e.g., X: Ninteger;)
e Java: object references

CS 412/413 Spring 2008 Introduction to Compilers

14

Function Types

Type: T xT, x .. x T, —> T,

Function value can be invoked with some argument
expressions with types T;, returns return type T,

C functions: Int pow(int X, Iint y)
type: int x int — int
Java: methods have function types

Some languages have first-class functions
— usually in functional languages, e.g., ML, LISP
— C and C++ have function pointers
— Java doesn’t

CS 412/413 Spring 2008 Introduction to Compilers 15

Type Aliases

e« Some languages allow type aliases (type
definitions, equates)
— C: typedef int int_array] |;
— Modula-3: type int_array = array of int;
— Java doesn’t allow type aliases

e Aliases are not type constructors!
— Int_array is the same type as int []

e Different type expressions may denote the
same type

CS 412/413 Spring 2008 Introduction to Compilers

16

Implementation

e Use a separate class hierarchy for type ASTSs:

class BaseType extends Type { ... }

class IntType extends BaseType { ... }

class BoolType extends Base Type { ... }

class ArrayType extends Type { Type elemType; }
class FunctionType extends Type { ... }

e Translate type expressions to type objects during
parsing

non terminal Type type
type ::= BOOLEAN {: RESULT = new BoolType(); :}
| ARRAY LBRACKET type:t RBRACKET {: RESULT = new ArrayType(t); :}

e Bind names to type objects in symbol table during
subsequent AST traversal

CS 412/413 Spring 2008 Introduction to Compilers 17

Processing Type Declarations

e Type declarations add new identifiers and
their types in the symbol tables

e Class definitions must be added to symbol
table:

class_defn ::= CLASS ID:id { decls:d }

e Forward references require multiple passes
over AST to collect legal names

classA{ B Db; }
classB { ... }

CS 412/413 Spring 2008 Introduction to Compilers

Type Comparison

e Option 1: implement a method T1.Equals(T?2)
— Must compare type objects for T1 and T2

— For object-oriented language: also need sub-typing:
T1.SubtypeOf(T2)

e Option 2: use unique objects for each distinct type

— each type expression (e.g., array[int]) resolved to
same type object everywhere

— Faster type comparison: can use ==
— Object-oriented: check subtyping of type objects

CS 412/413 Spring 2008 Introduction to Compilers 19

Type-Checking

e Type-checking = verify typing rules
 Implement by an AST visitor

class typeCheck implements Visitor {

Object visit(Add e, Object symbolTable) {
Type t1 = (int) e.el.accept(this, symbolTable);
Type t2 = (int) e.e2.accept(this, symbolTable);
If (t1 == Int && t2 == Int) return Int;
else throw new TypeCheckError(“+”);
h

Object visit(Num e, Object symbolTable) {
return Int;
b

Object visit(ld e, Object symbolTable) {
return (SymbolTable)symbolTable.lookupType(e);

}

CS 4}2/413 Spring 2008 Introduction to Compilers 20

CS412/CS5413

Introduction to Compilers
Tim Teitelbaum

Lecture 17part2: Classes and Objects
22 Feb 08

CS 412/413 Spring 2007 Introduction to Compilers

21

Records

e Objects combine features of records and abstract data types

e Records = aggregate data structures
— Combine several variables into a higher-level structure
— Type is essentially Cartesian product of element types
— Need selection operator to access fields
— Pascal records, C structures

e Example: struct {int x; float f; char a,b,c; inty } A;
— Type: {int x; float f; char a,b,c; inty }
— Selection: Ax =1; n=A.y;

CS 412/413 Spring 2007 Introduction to Compilers 22

ADTSs

e Abstract Data Types (ADT): separate implementation from
specification
— Specification: provide an abstract type for data
— Implementation: must match abstract type

e Example: linked list

Implementation

Cell = { int data; Cell next; } specification
List = {int len; Cell head, tail; int length():
int length() { return l.len; } List append (int
int first() { return head.data; d);
Llist rest() { return head.next; Int first();
List append(intd) { ... } :

CS 412/413 Spring 2007 Introduction to Compilers

23

Objects as Records

e Objects have fields _
class List {
. .. int len;
e ...IN addltlon, they have Cell head, tall,
methods = procedures _
that manipulate the data ~ Intlength();
(fields) in the object List append(int d);
Int first();
List rest();
e Hence, objects combine 1 O
data and computation

CS 412/413 Spring 2007 Introduction to Compilers 24

Objects as ADTs

= Specification: signatures of public methods and fields of object

e Implementation: Source code for a class defines the concrete
type (implementation)

class List {
private int len;
private Cell head, tall;

public static int length() {...},;
public static List append(intd) {...};
public static int first() {...} ;
public static List rest() {...};

}

CS 412/413 Spring 2007 Introduction to Compilers 25

Objects

What objects are:

— Aggregate structures that combine data (fields) with
computation (methods)

— Fields have public/private qualifiers (can model ADTS)

Need special support in many compilation stages:
— Type checking

— Static analysis and optimizations

— Implementation, run-time support

Features:

— Inheritance, subclassing, polymorphism, subtyping,
overriding, overloading, dynamic dispatch, abstract
classes, interfaces, etc.

CS 412/413 Spring 2007 Introduction to Compilers

26

Inheritance

e Inheritance = mechanism that exposes common features of
different objects

e C(Class B extends class A = “B has the features of A, plus
some additional ones”, i.e., B inherits the features of A

— B is subclass of A; and A is superclass of B

class Point {
float X, y;

float getx({ ... };
float gety({ ... };
by

class ColoredPoint extends Point

{

Int color;
Int getcolor(){ ... };

27

CS 412/413 Spring 2007 lon to Compilers

Single vs.

Multiple Inheritance

e Single inheritance: inherit from at most one other object (Java)

e Multiple inheritance:

may inherit from multiple objects (C++)

class A {
INt a;
INt

geta()...}

class B {
Int b;
INt

getb(Q)... };

CS 412/413 Spring 2007

classC: A, B{
Int c;
Int

getcOA... };

Introduction to Compilers 28

Inheritance and Scopes

e How do objects access fields and methods of:
— Their own?
— Their superclasses?
— Other unrelated objects?

e Each class declaration introduces a scope
— Contains declared fields and methods
— Scopes of methods are sub-scopes

e Inheritance implies a hierarchy of class scopes
— If B extends A, then scope of A is a parent scope for B

CS 412/413 Spring 2007 Introduction to Compilers

29

Example

class A { Global symtab

- |n-t X, A Obj =A=

Int f(int z) { B obj |=B=
intv; ... obj

) —
1 =A= symtab / \ C= symtab
A

class B extends A {

bool V; fun int — int Z int
int t;
} =B= symta / \ f Symtab
bool par
class C { t var | int vV | var int
A 0O: |
int z;
ks

CS 412/413 Spring 2007 Introduction to Compilers 30

Example

class A { Global symtab

- |n-t X, A Obj =A=

Int f(int z) { B obj |=B=
intv; ... obj

) —
1 =A= symtab / \ C= symtab
A

class B extends A {

bool V; fun int — int Z int
int t;
} =B= symta / \ f Symtab
bool par
class C { t var | int vV | var int
A 0O: |
int z;
ks

CS 412/413 Spring 2007 Introduction to Compilers 31

Class Scopes

e Resolve an identifier occurrence in a method:

— Look for symbols starting with the symbol table of the
current block in that method

e Resolve qualified accesses:
— Accesses o.f, where o Is an object of class A

— Walk the symbol table hierarchy starting with the symbol
table of class A and look for identifier f

— Special keyword this refers to the current object, start
with the symbol table of the enclosing class

CS 412/413 Spring 2007 Introduction to Compilers 32

Class Scopes

e Multiple inheritance:
— A class scope has multiple parent scopes
— Which should we search first?
— Problem: may find symbol in both parent scopes!

e Overriding fields:
— Fields defined in a class and in a subclass
— Inner declaration shadows outer declaration
— Symbol present in multiple scopes

CS 412/413 Spring 2007 Introduction to Compilers

33

Inheritance and Typing

Classes have types
— Type is Cartesian product of field and method types
— Type name is the class name

What is the relation between types of parent and inherited
objects?

Subtyping: if class B extends A then class A
— Type B is a subtype of A |
— Type A is a supertype B B extends AI

Notation: B <: A

CS 412/413 Spring 2007 Introduction to Compilers 34

Subtype ~ Subset

“A value of type S may be used wherever
a value of type T Is expected”

S<: T — values(S) c values(T)

alues of\glyes of
type S / type T

CS 412/413 Spring 2007 Introduction to Compilers 35

Subtype Properties

e If type Sis a subtype of type T (S <: T), then:

a value of type S may be used wherever a value of type T is
expected (e.g., assignment to a variable, passed as
argument, returned from method)

ColoredPoint <: Point

Point Xx;
ColoredPoint v; T T
X =V; subtype supertype

e Polymorphism: a value is usable as several types

e Subtype polymorphism: code using T's can also use S’s; S
objects can be used as S's or T’s.

CS 412/413 Spring 2007 Introduction to Compilers 36

Assignment Statements (Revisited)

A id:T|-E:T
A id:T]-Id=E:T

(original)

A id:T |-E:S where S<:T (with subtyping)
A idT|—-id=E:T

CS 412/413 Spring 2007 Introduction to Compilers 37

How To Test the SubType Relation

class A {
int x: Global symtab
Int f(int z) { A | obj FA=
Intv; ... B obj [=B=
by obj FC=
¥ =A= symtab / \ C= symtab
class B extends A { =
bool y; fun int — int b —B=
Int t;
¥ =B= Symta / \ f symtab
class C { bool arg
A a; t var | int v | var int
B b; |
a=b;
+

CS 412/413 Spring 2007 Introduction to Compilers 38

Implications of Subtyping

e We don't statically know the types of object references
— Can be the declared class or any subclass
— Precise types of objects known only at run-time

e Problem: overriden fields / methods

— Declared in multiple classes in hierarchy. Don’t know statically
which declaration to use at compile time

— Java solution:

« statically resolve fields using declared type of reference; no field
overriding

e dynamically resolve methods using the object’s type (dynamic
dispatch); in support of static type checking, a method m overrides
m’ only if the signatures are “nearly” identical --- the same number
and types of parameters, and the return type of m a subtype of
the return type of m’

CS 412/413 Spring 2007 Introduction to Compilers 39

Example

class A { Global symtab
. t]lc?'t z[(;){ A | obj |=A
Int f(int z :
intv; ... B OEJ_ =B
+ o)

class B extends A {

L =A= symtab / \ C symtab
— A=

int%%?r:tyé) { fun int - int b —B—
mt}\.N; - =B= Symta/ \ f symtab
¥ y bool arg
class C { g fun int - int v | var int
A a = new B(); |
B b =new B(); g Symtgb
LoaX ... z |arg | int
.. by .. w | var | int
ks

CS 412/413 Spring 2007 Introduction to Compilers 40

Example

var

—RB=

class A { Global symtab
: t]lc?'t 3[(;) { A | obj |=A
int f(int z _
intv; ... B obj EB
} , obj
L =A= symtab / \ C= symtab
class B extends A { —
bool Xx;
int f(int 2) { f fun int - int b
MEW - == symtah f symtab
+
} X | var | bool z |arg | int
class C { f | funjint—ing |V Valr int
A a = new B();
B b = new B(); f symtab
LeauX ., z |arg | Int
. b.X ... w | var | int
ke

CS 412/413 Spring 2007

Introduction to Compilers

41

Example

var

—B=

class A { Global symtab
: t]lc?'t 3[(;) { A | obj |=A
int f(int z _
intv; ... B obj EB
Y obj
¥ =A= symtab / \ C= symtab
class B extends A { —
bool Xx;
int_f(int 7) { f fun Int = int b
mt}yv - =B= Symta/ \ f symtab
} X | var | bool z |arg | int
class C { f | funljint—>intg | V Valr Int
A a = new B();
B b = new B(); f symtab
Loaf() ... z |arg | Int
. b.f(1) ... w | var | Int
¥

CS 412/413 Spring 2007

Introduction to Compilers

42

Objects and Typing

e Objects have types
— ... but also have implementation code for methods

e ADT perspective:
— Specification = typing
— Implementation = method code, private fields

— Objects mix specification with implementation

e Can we separate types from implementation?

CS 412/413 Spring 2007 Introduction to Compilers

43

Interfaces

e |nterfaces are pure types; they don't give any

Implementation

Implementation

class MyList implements List

{

private int len;
private Cell head, tail,

public int length() {...};
public List append(int d)

{.}
public int first() {...} ;

B

specification

interface List {
int length();
List append(int
d);
int first();
List rest();

}

CS 412/413 Spring 2007 Introduction to Compilers 44

Multiple Implementations

e Interfaces allow multiple implementations

InterfaggaksEiimpleList implements List {
Int length();private int data;
Lis=appenginBte SimpleList next:;
Int f”rStO ublic int length()
List reS«EQegrn 1+next.length() } ...

J

class LenList implements List {
private int len;
private Cell head, tail,
private LenList() {...}
public List append(intd) {...}
public int length() { return len; }

CS 412/413 Spring 2007 Introduction to Compilers 45

Implementations of Multiple Interfaces

Interface A {
int foo();
}
iInterface B {
Int bar();
}
class AB implements A, B {
int foo(){ ... }
int bar(){ ... }
b

CS 412/413 Spring 2007 Introduction to Compilers

46

Subtyping vs. Subclassing

Can use inheritance for interfaces
— Build a hierarchy of interfaces

Interface A {...} B <-A
Interface B extends A {...} -

Objects can implement interfaces

class C implements A {...}

Subtyping: interface inheritance
Subclassing: object (class) inheritance
— Subclassing implies subtyping

CS 412/413 Spring 2007 Introduction to Compilers

47

Abstract Classes

e Classes define types and some values (methods)
e |Interfaces are pure object types

e Abstract classes are halfway:
— define some methods
— leave others unimplemented
— N0 objects (instances) of abstract class

CS 412/413 Spring 2007 Introduction to Compilers 48

Subtypes In Java

Interface I, class C class C;
extends I, { ... } Implements I { extends C,
.. }
I|2 ! <2
1, C Cq
I, <: 1, C<:l C,<:C,

CS 412/413 Spring 2007 Introduction to Compilers 49

Subtype Hierarchy

e Introduction of subtype relation creates a
hierarchy of types: subtype hierarchy

/‘
11
/I\
typeor |Cl |2 13
subtype < PN
hierarchy C2 C3 C4 _ :
| lass/inheritance
hierarchy

. C5

CS 412/413 Spring 2007 Introduction to Compilers 50

	CS412/CS413
	What Are Types?
	How to Ensure Type-Safety?
	Static vs. Dynamic Typing
	Strong vs. Weak Typing
	Soundness
	Concept Summary
	Classification
	Why Static Checking?
	Type Systems
	Type Expressions
	Array Types
	Record Types
	Pointer Types
	Function Types
	Type Aliases
	Implementation
	Processing Type Declarations
	Type Comparison
	Type-Checking
	CS412/CS413
	Records
	ADTs
	Objects as Records
	Objects as ADTs
	Objects
	Inheritance
	Single vs. Multiple Inheritance
	Inheritance and Scopes
	Example
	Example
	Class Scopes
	Class Scopes
	Inheritance and Typing
	Subtype  Subset
	Subtype Properties
	Assignment Statements (Revisited)
	How To Test the SubType Relation
	Implications of Subtyping
	Example
	Example
	Example
	Objects and Typing
	Interfaces
	Multiple Implementations
	Implementations of Multiple Interfaces
	Subtyping vs. Subclassing
	Abstract Classes
	Subtypes in Java
	Subtype Hierarchy

